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FOREWORD

This final report, Volume III-System and Program Trades, was prepared by
Martin Marietta Denver Aerospace for NASA/MSFC in accordance with contract
NAS8-36108. The study was conducted under the direction of NASA OTV Study
Manager, Mr. Donald R. Saxton, during the period from July 1984 to October
1985. This final report is one of nine documents arranged as follows:

Volume I Executive Summary

Volume II OTV Concept Definition and Evaluation
Book 1 Mission and System Requirements
Book 2 OTV Concept Definition
Book 3 Subsystem Trade Studies
Book 4 Operations

Volume III System and Program Trades

Volume IV Space Station Accommodations

Volume V Work Breakdown Structure and Dictionary

Volume VI Cost Estimates

Volume VII Integrated Technology Development Plan

Volume VIII Environmental Analyses

Volume " IX Study Extension Results

The following personnel were key contributors during the July 1984 to
October 1985 period in the identified disciplines:

Study Manager J.T. Keeley (March 1985~0ctober 1985)
R.B. Demoret (July 1984-February 1985)

. Dickman (Cryogenic Systems)

Projecﬁ Managers G.J
A.E. Inman (Storable Systems)

. Nelson (Missions, Trades & Programmatics)
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1.0 INTRODUCTION

This volume documents the key system and program trade studies performed
during the initial contract period (through 15 October 1985) to arrive at a
preferred Orbital Transfer Vehicle (0OTV) system concept and evolutionary
approach to the acquisition of the requisite capabilities. These efforts were
expanded to encompass a Space Transportation Architecture Study (STAS) mission
model and recommended unmanned cargo vehicle in a study extension reported on
in Volume IX. The basis for these initial trade studies and comparisons is
the system requirements identified as part of contract SOW Task 1 and the
concept synthesls and trade studies performed under contract SOW Tasks 2 and 3.

The most important factors affecting the results presented in this volume
are the mission model requirements and selection criteria. The reason for
conducting the OTV concept definition and system analyses study is to select a
concept and acquisition approach that meets a delivery requirement reflected
by the mission model. There are two potential justifications for an OTV: to
compete with existing expendable upper stages, and to provide a heavy lift and
man-rated capability that does not now exist. The latter reason does not
support an early start of OTV development. The heavy lift requirement
identified in the Revision 8 Low Mission Model (20 klb to geosynchronous Earth
orbit [GEO]) falls in 1999 and the man-rated payload occurs in 2008. The one
compelling reason for considering a near time OTV capability is to improve the
economics of space transportation and make the NASA Space Transportation
System competitive with existing and emerging foreign and commercial delivery
systems. As a consequence, our system and program selection criteria has been
structured to reflect economic factors such as front end cost, return on
investment, and economics of the system after it is in place as well as
considerations of risk and flexibility.

Figure 1.0-1 summarizes the sequence of program development followed in
this study. Our pre-contract IR&D studies had developed a reference ground
based Aft Cargo Carrier (ACC) configuration. By the March 1985 mid-term
review, high potential cryogenic and storable concepts had been identified,
and subsystem trades had selected the preferred subsystem configurations. At
this time, the mission model underwent a significant change. Our concepts and
subsystem decisions were reassessed and changes were incorporated. We then
proceeded to identify and trade alternative acquisition strategies. The net
outputs of this phase of the study were configurations capable of meeting the
mission delivery requirements of the Revision 8 Low Mission Model in the most
desirable way, and the program that should be pursued in this development.
Only study recommendations that could be justified on the basis of the low
model were made at the request of MSFC. The selection procedure 1is further
described in the following paragraphs.
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1.1 Decision Summary

There are three basic viable approaches to providing orbital transfer for
the high altitude missions to be conducted in the coming decades: Growth of
existing cryogenic expendable vehicle; Development of a new storable,
reusable, pump fed OTV; Or development of a new, reusable cryogenic OTV. The
decision network in Figure 1l.1-1 summarizes the evolutionary paths these
approaches could follow and identifies the trade studies conducted at points
along the path. We carried a program reflecting growth of the current
expendable ground based vehicle fleet through the entire mission model to
establish a cost comparison reflecting as little change as possible to the
current way of providing space transportation. We laid out programs that
reflected development of both storable and cryogenic reusable 0TVs that
evolved from ground based to space based operation. These propellant options
were developed through the point where space basing impacts were understood
before a selection was made between them. Engine selection, delivery mode for
ground based vehicles (ACC vs Cargo bay), and the merit of man-rating the
ground based vehicle were considered. Space base accommodations were
compared, as was the preferred time for introducing man-rating in a space
based vehicle, At this point, all the data required to make the propellant
selection was available, and this selection was made, Final program
comparisons were made to select the OTV program best able to provide the
capability required by the Revision 8 OTV Low Mission Model.

Trade studies were conducted to implement the detision tree shown in
Figure 1.1-1. This sequence of trades identified preferred alternatives for
key program elements and served as a basis for selecting a preferred overall
0TV evolutionary strategy for transitioning from an initial ground based OTV
configuration to a man-rated configuration for space based operations with the
availability of the Space Statiom in 1999.

The trade studies shown in this report include:

Section 2.1 Aeroassist vs All-Propulsive Retrieval

Section 2.2 I0C Cryogenic Engine Selection

Section 2.3 Evolutionary Path to Man-Rating and Cost
Effective Reliability Requirements

Section 2.4 Space Based Propellant Acquisition

Section 2.5 Space Based Tank Farm Selection

Section 2.6 Cryogenic Versus Storable Upper Stages

Section 2.7.2 ACC OTV Delivery/Scavenging Versus STS

Cargo Bay OTV Delivery/Scavenging
Section 2.7.3 Overall OTV Program Evolutionary Strategy
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1.2 Mission Model

This study was initiated with the objective of meeting the mission
requirements delineated in Revision 7 of the MSFC OTV Mission Model. The
ma jor characteristics of this model are summarized in Table 1.2-1. At the
midterm review, a new Revision 8 mission model, Table 1.2-2, was issued for
use through the remainder of the basic study. The study contractors were
instructed to make recommendations that were justifiable based on the Revision
8 Low Mission Model,

The constituency of the Revision 8 model is essentially the same as
Revision 7 except for the elimination of the 14 klb/14 klb manned GEO
mission, This mission was a driver for OTV but is now replaced with a more
modest manned mission payload of 7.5 klb/7.5 klb., The elimination of the
manned lunar mission from the low model is not significant in discounted
economic terms but does impact the sizing of OTV stages.

The major revision impact is the reduction in projected annual and total
traffic for OTV. Revision 7 reflected an average of 27 flights per year on
the nominal model while the Revision 8 Low Mission Model has only 9. This
impacts the expected economic benefits that can be accrued and, therefore, the
amount of return on investment.

Even with these changes, the effective average OTV delivery requirement
changed very little. The Revision 7 Nominal Mission Model had an average
propellant requirement of 43 klb and the Revision 8 Low Mission Model has an
average propellant requirement of 42.7 klb. This close relationship reflects
the fact that multiple delivery and DOD payloads dominate both models.



zsh €8z sIvi04
Y061/¥861 9t 9l " swmondau | oot
9zt 192 swiolans

£661/£661 281 L4 aoq 00061
8661/200Z 98 0 s 005¥/000L ONIDIAUIS "1VS 030 OINNVWNN | o008t
6607866t 3¢ T 9e-02 0/0000Z-00001 AHIANIA0 2211131vS 030 30UV | poos)
661/9064 Is Le -2z 0002/00C51~0008 | AUIAIIIC OVOIAV4 030 3WILINW | o008l
6002/0102 9 z 09 000°01/000°08 $21151901/211405 Isva uvNn | oo
2002/6007 ¢ £ ts 0/000'08 SINIWIII ISVB UYNMY | oo0l
9002/1002 € t 09 000°51/000°00 3tLHOS WYNNT OINNVYW 000¢L1¢
1002/t 002 c £ ot 0/0000Z~ 0005 UVNNY Q3INNVANG | oooct
»G61/0661 | ¥4 143 ST> 0/0001€—-0002 AUVIINVYI 000!}
zooz/z102 e ) oz 0006/00591 $O1151901 'V15 030 GINNVW | 0005t

- 10002 0 61 st 00£2/00001 $21151D07 'V15 039 QINNVIINNG |  000st
200271002 £ z oz - st 0/00002-000C! SINIWI1I NOILVLS 039 |  oo0ost
661/5002 6 ' CZUo st 000¥1/000¥1 YO 0059/0059 311405 03D QINNVIY | po0SI
$661/0002 9t ’ ] 005¥/000L ONIZIAUIS "1V 0IDQINNVWNN |  ooott
9661/0002 8 i st 0/0000Z WYO41V1d 039 TVNOILVYIL0 | oot
¥661/0661 1 t oc 0/00021 WUO21V1d 03D IVINIWINIIX] |  oooct

M
301 WON o1 {14) NMOQ/dN 4dNOUD NOISSIW ww_m.Ou“
1300W NOISSIW 1HONIT (@3 1H913M avoIAvd

NOILISOdWOD T3AOW NOISSIW [ NOISIAYY T-Z2°T 3'T6VL




QRIGINAL PACE IS
OF POOR QUALITY,

st 17} fivioy
Le8i/n08t L} ¢t LICLINFET 00101
7Y m $Iv101ens
v661/0664 s 89 'AIND3) 0000200021 (0143N30Ia0a |  oo0sy
1681/1002 ] t st~o0r /00002 AU3AIII02111131v8 039 20uvi | ooon
vesL/resl « L4 ® 0002/0002% | AW3IAIN3Q QYOIAYY 030 3L INN 00081 ~
$002/1202 ’ ] o 000°01/000°08 PILS1001/314408 3gva wvnny | poozi
20020202 t o I /000’08 SAININIII abve uvNn | ooost
8002/5102 c ° (] 000°81/000'08 211408 WYNNY 03INNYM | pooyt
10022002 2 z oz 0/00002-0009 VYNATQINNveNn | poocs
vesi/vest v 9 -y /000090002 AUVIINYY | oooz1
2661/v002 1 ] T 0002/0002¢ ILSID0T VIS D1ALIS 039 |  goost
2861/2002 H z oz - gt ©/000€1 SININITII NOILVLS 231AB35 03D |  oo0st
tooz/s002 1 < ol 008£/005; 3114OS 030 GINNVYIW |  000g1
9681/1002 \ ' [} 0099/000¢ ONIJIAYIS *A¥14 030Q3INNVIWNA |  ooocs.
2661/9002 * s [T 0/00007 NY041VI403D TIVNOILYHIO |  boot)
$661/0002 t i oc 0/000Z¢ WHOJLVI4 03D TVINININAAXI |  oooct
201 now mov u) NMOQ/dn 4N0YD NOISSIN sainas
300N NOISSIIY HLONT 180 thoiam avolavd

NOTLISOdWOOD TadOW NOISSTW 8 NOISIATY ¢-C°T 374v1




Table 1.2-3 shows the design reference missions from the nominal Revision

8 model. The one difference from the low model, aside from the change in

operational dates, is the 80 k1lb/15 klb manned lunar mission.

model in our trade studies for selection of configuration and evolutionary
strategy and then noted the design and programmatic implications of going to

the nominal model.

TABLE 1.2-3 DESIGN REFERENCE MISSION, REVISION 8 NOMINAL MODEL

We used the low

I I | FIRST |

| | MISSION | FLIGHT |

[ MISSION TYPE | NUMBER | DATE |

| Multiple Payload | 18912 [ 1994  [GB OIV Performance Driver

] 12000/2000 | } ]

| Unmanned GEO 1 1 ~ |First Long Duration Mission - 10 Days
| Missions | 13002 | 1996 |Rendezvous to Perform Servicing

| 7000/4510 [ |

| "GEO Delivery [ 18040 | 1997 [Performance Driver

| 20000/0 | |

| Manned GEO Sortie] 15700 | 2002 IMission Duration - 18 Days

| 7500/7500 | | | :

| "GEO Platform 113700 [ 1998 [Low g Requirement

| 20000/0 | I

| Manned Lunar T 17203 | 2006  |Multiple Configuration Requirement
| Sortie | | | :

| 80000/15000 | | I

Tables 1.2-4 and 1.2-5 compare the design reference missions derived from
the low Revision 7 and Revision 8 models,

The multiple payload mission stayed approximately:the same, The MOLNIYA
(and GPS missions) were not individually specified and the low g mission was
added. The mission duration of 18 days was added although this was also a
reliability driver under Revision 7.



TABLE 1.2-4 DESIGN REFERENCE MISSION, REVISIOM 7 LOW MISSION MODEL

| [SELECTED DRM | FIRST | |
| |MISSION MODEL| FLIGHT | I
| MISSION TYPE |  NUMBER | DATE | |
| Multiple Payload [Remanifested | 1993 [Performance Driver for ground-based |
| Delivery | 18903 | loTv |
| 12876 Up | | I I
| 2166 Down | ] | |
| Molniya and GPS |Unique | 1993 IMission Operation Difficulty for |
| Missions |Delivery | | Space-Based Operation

| |[Missions | |

| Unmanned Service | 13002 [ 1995 [First Rendezvous and Docking |
| 7K Up | | | Autonomous Rendezvous and Docking |
| 4.51K Down | | IDrives Flight Operations and

| ] | |Equipment Complexity

| "GEO Delivery [ 13003 [ 1996 |Earliest Required Mission

| 206 Up O Down | | |Most Frequent Mission

TABLE 1.2-5 DESIGN REFERENCE MISSION, REVISION 8 LOW MISSION MODEL

| I [ FIRST | |
l | MISSION | FLIGHT | [
| MISSION TYPE | NUMBER | DATE | I
| Multiple Payload [ 18912 | 1994 1GB OTV Performance Driver |
| 12000/2000 | | |

| Unmanned GEO | | [First Long Duration Misslon - 10 Days

| Missions ] 13002 | 2001 . |Rendezvous to Perform Servicing

| 7000/4510 | ]

| GEO Delivery T 18040 | 2001 [Performance Driver

| 20000/0 | | I

| Manned GEO Sortie| 15700 | 2008 Mission Duration - 18 Days

| 7500/7500 |

| GEC Platform 13700 | 200% Low g Requirement

| 20000/0 |

1.3 Selection Criteria

The selection criteria to be used in differentlating among alternative OTV
system and program options depends on the environment in which the system
operates. A competitive environment, ome where capital for investment is
scarce, influences how the decision is made for a new venture. The OTV is in
a competitive environment and is being considered for development on the basis
of the attractiveness of reducing the cost of payload delivery. The
effectiveness of 0TV in reducing the recurring cost of payload delivery must
be balanced against acquisition cost in terms of several economy factors. If
its advantage 1is significant, it makes the STS and OTV more attractive to
users,
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Non-economic factors are also important. The mission model 1s a
projection of the expected OTV marketplace and should not be viewed as a fixed
or absolute opportunity. The potential growth and flexibility of each option
is important, i,e., the ability to adjust to possible requirement changes or
to be used for future missions. It provides a measure of the capability to
evolve or grow to satisfy changes in the market. Also, the risks attendant
with candidate OTV options and acquisition strategies are important because
they reflect the possibility of increased cost. Key external risk factors to
be assessed are those that cannot be mitigated or controlled by the OTV design.

Cost data projected for OTV systems development is compared against the
cost of competitive systems which exist or possess proven technology. The
economic advantage of the OTV system over its competition must be present to
provide a measure of its viability.

In the trade studies, the cost data in 1985 constant and discounted
dollars is provided and the economic factors are derived and presented.
Economic decisions are made using Present Value (PV) dollars, Present value
is a time projection of the value of money when inflation and the discounted
value of the dollar are taken into account, ‘In accordance with the ground
rules, the PV used in the studies incorporates a zero percent inflation rate
and a ten percent discount rate.

Several economic factors are used to help determine the best alternative,
Depending on the nature of the study, different economic factors may be
selected for the analysis. Three principal economic factors used for all
studies, except the Man Rating and Reliability Trade Study, are Design
Development Test and Engineering (DDT&E), Benefit, and Return on Investment
(ROI). The nature of the Man Rating and Reliability study is different in
that reliability values are determined for use on all OTVs rather than making
a selection among a number of proposed alternatives.

The economic factors used in the trade studies are described below. These
factors are used individually and in combination with one another to help
provide an indication of the best alternative. As can be seen, some of the
factors are nested in others., For example, DDT&E is used as a subfactor in
the ROI analysis., It should also be noted that any single factor may not be
sufficient to reach a valid conclusion by itself. For instance, the ROI may
identify an alternative as the best buy, but the DDT&E cost of the alternative
may not be affordable in view of available budget.

Once the economic factors of the alternatives have been determined, a
score is provided. The preferred alternative for each economic factor is
given a score of 10 and the other alternatives are given a score relative to
the alternative marked with a 10,
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An explanation of the economic factors used in this report is shown below:

a,

bo

Design, development, test and evaluation (DDT&E). DDT&E is a
representation of the investment cost to develop a product.

Benefit. Benefit determines the value or profit of an alternative
vis-a-vis the competition (which 1is generally not taking any action
at all), it is determined by finding the difference between the cost
of the competition doing the task and the cost of a particular
alternative doing the task. For example, the benefit of a particular
OTV alternative would be represented by finding the difference
between the cost per flight of competing (Cpf.) systems and this

cost per flight of the OTV (Cpf,). The total benefit would be
represented by multiplying this difference by the number of flights
(N. and N,) projected in the mission model.

Benefit = CPF. * N, - CPF, * N,

Return on Investments (ROI). ROI is a measure of the best buy. It
is determined by dividing benefit (described in b above) by DDT&E to
produce a best profit to cost ratio., To normalize the equation, one
is subtracted from the result, If the ratio is negative, the option
is not a viable economic venture. If the ratio is zero, the venture
retrieves the investment but is not profitable. A positive ratio
indicates the venture is profitable, i.e., worthwhile vis-a-vis not
undertaking the venture and relying on existing capabilities,

The algorithm for ROI is:
CPF, * N, ~ CPF, * N,

ROI = -1
DDT&E

All costs used for the benefit and ROI equations are 1985 discounted
dollars,

Life Cyecle Cost (LCC). LCC is a representation of total costs over
the 1life of a system. Martin Marietta uses a LCC computer model
developed with company funding. The model calculates all phases of
cost based on the technical description of the 0TV, the operational
scenarios, and the requirements of any supporting program, e.g.,
Space Station, Aft Cargo Carriler.

Typical inputs to the LCC model include the following:

o OTV stage weight for the subsystem component level;

o] Test hardware requirements;
o Annual mission and propellant requirements;
o Operational turnaround times;

0 Intravehicular activity (IVA) and extravehicular activity (EVA)
requirements;

11



o Key implementation schedule dates;
o Supporting program data; and
o] Specific payload transportation requirements.

Cost per flight, competition (Cpf.). Cpf, represents the per
flight operations cost of the competing system(s).

Cost per flight, option (Cpf,). Cpf, represents the per flight
operations cost of the option under consideration, i.e., OTV or
program option,

Payback. Payback represents the amount of projected economic
advantage realized after the implementation of the system. It
provides a measure of how quickly the investment is captured in
revenues. It is typically plotted along with the investment cost
(DDT&E) to determine the cross over point where the advantage of
going to the new system is first realized. Several alternative
systems may be plotted together for the purpose of comparison.

Growth and flexibility. Growth and flexibility is the ability to
ad just to possible requirements changes or to continued use for
future missions,

Risk. Risk is an assessment of what cost related factors might go
wrong in the future if an alternative is selected. It comsiders both
the probability and the potential seriousness of something going
wrong.

Uniform vs Discrete Discount Methodologies. Within these trade
studies, two different ways of determining discounted costs were
employed. The first method involves spreading the costs year by year
(using 1985 dollars as the base year), Mathematically this is
represented as follows. Let

Ci = Costs incurred in Year i
Pi = Discount factor for Year i
Di - Discounted costs for year i, then

Di
D

Pi * Ci, and
Sum (Pi * Ci) for all i

For the case of uniform funding distributions:

Ci = Ci-1 for all i where i-1 does not equal 0, and
C =Ci for all i

D =C * Sum (P1), thus

P = Sum (P1) can be expressed as a constant factor.

12



2.0 TRADE STUDIES
2.1 All-Propulsive Versus Aeroassist Trade Study.

The purpose of this trade study is to evaluate the economic factors of
recovering the OTV at low Earth orbit (LEO) from high altitude missions using
the all-propulsive and aerocassist recovery concepts and to identify which of
the two concepts provides the best economic solution.

Earlier Phase A studies conducted from 1979-1981 by Boeing and General
Dynamics show the viability of returning upper stage vehicles and their
payloads from high orbit to LEO. These studies were based mainly on the
all-propulsive concepts. Current concepts using an aeroassist device to take
out the delta velocity of an OTV or OTV-and-payload upon return to LEO have
been examined. An analysis produced for our first quarter report showed the
potential advantage the aercassist recovery concept holds over the
all-propulsive concept. This analysis is summarized in Figure 2.1-1. The
curves on the figure show the percentage of propellant the aeroassist concept
can save over the all-propulsive concept as a function of the aerobrake
weight/recovery weight- rated. In a 20K delivery mission, an aerobrake
welght/recovery weight ratio of 0.22 is realized, i.e., brake wt. 1885 /
(return stage wt. 8404 + prop. wt 200) = 0.22, For a 14K roundtrip mission, a
ratio of 0.08 is realized, i.e., brake wt 1885 / (return stage wt. 8880 + prop
wt 250 + PL wt 14,000) = 0.08. As can be seen on Figure 2.1-1, extension of
these aerobrake weight/recovery weight ratios show a 14 and 45 percent
aeroassist propellant savings over the all-propulsive concept for the 20K
delivery and 14K roundtrip missions, respectively.

2.1.1 Approach

Costing of the all-propulsive and aeroassist concepts 1s made based upon
OTV mission traffice identified in the Revision 7 Nominal Mission Model. An
analysis is made for both ground and space based modes of operation to
determine if OTV design concepts are capable of accomplishing the missions as
well as identifying the economic viability of the concepts. Cost figures are
compared against the competition which is represented by a Centaur upper stage
vehicle. The Centaur is chosen as the currently available vehicle most
capable of accomplishing missions contained in the mission model.

Derived cost figures for the all-propulsive and aeroassist concepts and

the competition are run through an economic analysis to help determine the
advantages one concept holds over the other,

13
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2.1.2 Ground Rules and Assumptions
Ground Rules and assumptions used for the study are shown below.

0 The following ground rules are constant for both options

o Constant fiscal year 1985 dollars excluding fee & contingency

0 Space based cryogenic configurations: 1I0C is 1994

o No evolution over the 17 year operations period

0 Ground test hardware includes Ground Vibration Test Article (GVTA),
Static Test Article (STA), Main Propulsion Test Article (MPTA), and
Functional Test Article (FTA)

o Space station requirements are assumed similar for both concepts.

Therefore, cost impacts are not included
o Initial OTV production requirements: 2 units
o Flight test article and GVTA refurbished for operational stages
o 2 OMV uses per mission
o Ground mission operations at 35 man-yrs/yr
o IVA & mission Ops costs: $16,000/hr; EVA cost: $48,000/hr
o IVA/mission = 80 hrs; EVA/mission = 4 hrs
o 2 STS deliveries per OTV: 0.2 STS deliveries per engine set

0 Reference all-propulsive

29.2 mlb of propellant for 389 missions

4 hrs/mission for space based mission operationms

20 equivalent operations spares (excluding engines)
Engine 1life = 15 missions (460K isp Pratt & Whitney)

oo 00

0 Reference aerocassisted 0TV

19.9 mlb of propellant for 389 missions

- 6 hrs/mission for space based mission operations
20 equivalent operations spares (w/o engine or aerobrake)
Engine life = 20 missions (460K isp Pratt & Whitney)
Aerobrake life = 5 flights
0.33 STS deliveries per aerobrake

00000 O

2.1.3 Alternatives

Two basic alternatives are evaluated in this study: the all-propulsive
concept and the aeroassist concept. The all-propulsive concept employs the
upper stage engine to slow the 0TV or OTV and payload for LEO. The vehicle
evaluated for the all-propulsive alternative uses a liquid oxygen/liquid
hydrogen engine with an Isp of 460 seconds.

The aeroassisted alternative uses a device to perform an aeroassist
maneuver to slow the 0TV (or OTV and return payload) for low Earth orbit., The
aeroassist maneuver uses the earth's atmosphere to reduce the vehicle's
velocity, thereby reducing the rocket burn required to enter low earth orbit
when returning from GEO or other high orbits, This aeromaneuver 1is
accomplished by grazing the upper atmosphere and converting the vehicle's

15




kinetic energy to heat. To correct for density variations and navigational
uncertainties during the aeropass, precise aerodynamic control is required.
We have evaluated a vehicle that uses vehicle 1ift for control. This vehicle
uses the deployable conical fabric lifting brake. (Reference: Subsystem
Trade Studies, Volume II, Book 3, Section 2,2).

2.1.4 Cost of Alternatives

An evaluation of the all-propulsive concept in both the ground based and
space based modes was made. The all-propulsive ground base mode is not
feasible when flown against Revision 8 of the MSFC Low Mission Model. This
was shown by running a 12 klb GEO delivery payload through a flight simulation
model. This simulation uses an OTV with a 55 klb propellant capacity and with
no aerobrake, The following results were produced:

o Propellant required: 59,037 1b (ergo exceeds the OTV 55 klb tank
capacity)

o Weight of OTV, propellant, and payload: 77,472 1b (ergo exceeds the
STS 72 k1b payload capacity)

This analysis alone does not eliminate the all-propulsive alternative. As an
evolutionary option, expendable upper stage vehicles could be used during the
ground based mode of the mission model. The all-propulsive operation could be
begun during the space based mode of the mission model. However, this
approach is at more of a disadvantage relative to aeroassist than 1is the case
in the space based operational mode., Due to the greater propellant
requirements of certain payloads, an all~propulsive GBOIV would require
separate STS manifesting of payload and stage/propellants, thus incurring
transportation costs well beyond the single STS requirement of an aeroassist
concept. For this reason, we elected to complete the all-propulsive versus
aeroassist trade in the space based mode, If aeroassist wins in this mode, it
will also be a winner in the ground based mode.

Life cycle costs for DDT&E, production and operations are shown on Table
2.1-1. AFE costs are included in DDT&E. Note the principal delta under
operations cost is propellant. Additionally, different stage sizes caused
higher airframe refurbishment and IVA costs for the all-propulsive candidate.

The cost per flight for each alternative and the competition is shown in
Table 2.1-2. The cost per flight for the all-propulsive and aeroassist
concepts are derived by dividing the operations cost by the number of mlssions
flown and adding the cost for delivering the payload to LEO. Payload delivery
is included to make OTV costs comparable with the competition.

The Centaur, which is used to represent the competition, represents the
vehicle which could best be upgraded to accommodate the mission model
requirements. The cost per flight of this vehicle is figured at $123M based
on the following:

o Centaur unit cost $50M

o STS delivery to LEO 73M

16



TABLE 2.1-1 ALL-PROPULSIVE VS AEROASSIST LCC (CONSTANT $)

| | "ALL PROP. | AEROASSIST | DELTA
| | | (Savings)
| | | |
| DDT&E | $1245.60M | $1316.50M | -$70.80M |
| Stage | 891,30 | 949,60 | -58.30
Systems } 354.40 , 366.90 : -12.30
Production I 58.10 { 61.50 i -3.40 |
Operations | 20086.60 | 16574.60 | 3512.00 |
Miss Ops. SB | 211,60 | 317.60 | -=106.00
| Miss Ops. GB ! 35.90 I 35.90 |
|  Launch Ops. SB | 235.70 | 235.70 |
Launch Ops. GB ] 3151.00 | 3973.00 | -822.00
Program Support | 381.90 | 453.00 | =71.30 [
| Propellant | 14617.50 | 9937.00 | 4680.50 |
| Stage Ops | | |
| Airframe Refurbish | 880.30 | 818.70 | 61.60
| IVA/EVA Air Frame (AF) | 572.60 | 491,70 | 80.90
| Brake Refurbish | | 230.90 ] =230.90
: IVA/EVA (Brake) } } 80.90 { -80.90
| Total LCC {$21390.40M I$l7952.60M » } $3437.80M
|
TABLE 2.1-2 COST PER FLIGHT
~ Alternative Cost Per Flight Cost Per Flight

(Constant $)

(Discounted $)

All-propulsive
Aeroassist

Competition

——— —— —— — ——— ——

$97M
$86M
$123M

$15.8M
$14 .4M

$22.7M

If the two 0TV concepts prove to be cost effective over the existing Centaur
configuration, they certainly will be cost effective over a more expensive
upgraded Centaur configuration required for some of the missions in the OTV

mission model.

A benefit analysis is shown in present value in Table 2.1-3. The value
shown for this analysis represents the cost advantage, or benefit, the
alternative concepts hold over the competition.

17



TABLE 2.1-3 BENEFIT ANALYSIS (PV)

I | | i 1 |
| Alternative | Cost Per Flight | Cost Per Flight | No | |
| | Competition | Option | Flights | Benefit |
{ | (Discounted $) | (Discounted §) | | (Disc.$){
1

; All-propulsive | (22.7M - 15.8M) x 389 = 2684 |

' | |
| Aeroassist | (22.7M - 14.0M) x 389 = 3384 |
| | |

A return on investment (ROI) calculation is shown in Table 2.1-4 which
factors in DDT&E to provide a benefit to investment ratio.

TABLE 2.1-4 RETURN ON INVESTMENT (PV)

I I I |

| . [ |
[ Alternative [Cost Per Flight |Cost Per Flight | No | DDT&E | [
| | Competition | Option IFlights |(Disc |Adj. |ROI
: | (Discounted $) | (Discounted §) | I $ | |

]
| All-propulsive | ((22.7M - 15.8M) x 389 / 1775.8M)~ 1 =2.5
| |
| Aeroassist | ((22.7M - 14.0M) x 389 / 1819.9M)- 1 =3.1
| |

2.1.5 Alternative Comparison

An alternative comparison is shown in Table 2,.,1-5. To aid in evaluating
each economic factor, a score is provided at the bottom of the table. A value
of 10 is given to the best option for each economic factor and a proportionate
value is given to the other option.

Figure 2,1-2 provides a graphic view showing the payback difference
between the two alternatives. The aeroassist option provides both an earlier
break even point and a greater benefit over the postulated life of the mission

model.
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TABLE 2.1-5 ALL-PROPULSIVE VS AEROASSISTED COMPARISON (PV)

| Economic B All-Propulsive I Aeroassist |
| Factor | ] |
| | | |
| [ [ |
| Benefit | 2684 | 3384 |
|  (Dpiscounted $) | | |
I ROI i 2.5 | 3.1 I
|

| Investment ] 775.8 | 819.9 |
| (Discounted §$) | | I
| | I |
| Score | | |
I | | |
| | i |
: Benefit : 7.9 : 10 {
} ROI } 8.1 : 10 }
} Investment ] 10 | 9.5 |

| | |

2.1.6 Conclusion

The aeroassisted concept provides the greatest economic advantage of the
two options in both the ground based and space based modes of operation. In
the ground base mode of operatiom, the all-propulsive concept is not feasible
in that propellant required to fly a GEO mission both exceeds the 0TV 55,000 1b
capacity of the OTV tanks and the STS 72 klb payload 1lift capacity. The
additional STS flights required to service payloads exceeding the Shuttle 1lift
capability would drive all-propulsive costs well beyond the aeroassist
operations costs,

In the space based mode of operations, the investment cost of both options
is reasonably affordable. The economic analysis for both benefit and return
on investment show aeroassist to be the winner. A payback analysis also shows
the aeroassist concept to have an earlier payback and greater overall return

over the full term of the mission model,

The conclusion of the trade study is therefore to select the aeroassist
concept over the all-propulsive concept.
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2.2 OTV Engine Trade Study

The purpose of this trade study is to select an Orbital Transfer Vehicle
(OTV) cryogenic engine which provides optimum benefits under Revision 8 of the
Marshall Space Flight Center (MSFC) Mission Model. At mid-term, when cost
analysis were based upon the 453 flights of the Revision 7 Nominal Mission
Model, study results showed that a $350M investment cost was justified to
develop an advanced engine with an Isp of 483 seconds., This study reexamines
the economic impact of the engine trade using the much more modest Revision 8
Low Mission Model which postulates only 145 flights over the 12 year life of
the mission model.

2,2.1 Approach
The following steps are used in conducting this trade study.

o Identify engine alternatives
o Identify propellant costs by year for each alternative
oo Compute propellant consumption
oo Compute propellant cost in constant and present value dollars

o Identify engine replacement cost by year for each alternative
oo Compute the number of engine replacements required .
oo Compute engine replacement cost in constant and present value

dollars
o Compute combined propellant and engine replacement costs
o Compute cost of existing engine (competition)
o Compare engine alternative with the competition and with one another

2.2.2 Groundrules and Assumptions
The following ground rules and assumptions are used for this trade study:

o 1985 dollars
) Propellant cost delivered to LEO is $1,500 per pound
o Present value:
Inflation: 0 percent
Discount: 10 percent
o Cost to deliver engine to LEO: $6.8M (54" Cargo Bay length charged
per ground rules at time trade conducted)
Engine competition:
RL 10A-3-3A
ISP : 440 seconds
Life: One hour
Unit cost: $1.5M
o Typical mission
To GEO: 12.4 klb payload
Return: 2.4 klb payload
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2.2,3 Alternatives

Three developmental engines are used to form different engine strategies
that serve as the alternatives used in this study. First the engine types
will be discussed followed by the alternative strategies.

The three developmental engines are the RL10-IIB, an initial operational
capability (IOC) engine, and an advanced engine, The existing RL10A-3-3A
engine 1s also used as the "competition” to serve as the baseline to determine
the profitability of each developmental engine. Basic cost and performance
information on these engines is shown in Table 2,2-1.

The RL10-IIB engine represents a low risk development which improves the
performance of existing engine technology (i.e., the technology used by the
RL10A-3-3A engine).

The IOC engine uses an advanced technology, new cycle engine which
possesses an Isp approximately equal to the practical limit of the existing
technology engines (e.g. RL10A-3-3A and RL10-BII engines). The IOC engine in
reality is an intermediate step. It provides improved efficiency without
requiring full development to the expected potential of the new cycle engines.

The advanced engine possesses an Isp near the expected limit of the new
cycle engines. This engine will be the most efficlent in terms of propellant
consumption,

The alternatives selected for this study are formed by using these engines
in different combinations for ground based (GB) and space based (SB)
operations. These alternatives are:

o Alternative 1. RL10-IIB engine GB to advanced engine SB.

o Alternative 2. IOC engine GB to advanced engine SB.

o Alternative 3, Advanced engine for both GB and SB.

o Alternative 4, RL10-IIB for minimum certification for both GB and SB.
o Alternative 5. I0OC engine for both GB and SB.
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TABLE 2.2-1 ENGINE COST AND PERFORMANCE DATA

| | THRUST T | DDT&E [ UNIT COST] |
| ENGINE | ( KLB | ISP | (CONSTANT | (CONSTANT | LIFE |
| | FORCE) | (SEC) | M) | ¢$M/ENG) | (HRS) |
: RLIO-11B 15 T 460 [ 98.2 [ 1.9 5 |

| | i [ i [
| Initial ] ] 1 | 1 |
| Operational | 7.5 | 475 | 175 | 2.85 | 5 j
} Capability ! = : } | !

|

| Advanced 7.5 [ 483 I 350 I 3.0 10 {
| | | | | | |
’ RL 10A-3-3A } 16.5 } 340 { 0 } 1.5 { !

1.25

2.2.4 Cost of Alternatives
2.2.4.1 Propellant Cost

Propellant requirements are determined for each engine by flying an
.average GEO mission on a simulation model using a 12.4 klb up payload and a
2400 1b down payload. A 45 klb propellant tank capacity is used for ground
based missions and a 55 klb propellant tank capacity is used for space based
missions. Burnout weight for the 45 klb vehicle is 5,689 1b and for the 55
klb vehicle is 8,090 1b.

Propellant requirements for this mission, as calculated by a flight
simulation model, are shown for each type of engine in Table 2.2-2. Table
2.2-3 provides a summary of propellant weights and delivery costs for each
engine. The propellant requirements are extended over the duration of the
Revision 8 Low Mission Model. Propellant delivery is figured at $1,500/1b.

2.2.4.2 Engine Replacements

Engine replacement cost calculations are based upon the unit cost of
the engine. Cost for engine installation and checkout are included in the
unit cost price. The frequency of engine replacement is based upon the burn

time requirement of the missions and the life expectancy of the engine. Table
2.2-4 summarizes engine replacement costs.

2.2.4.3 Total Costs

Engine replacement and propellant costs from Tables 2.2-3 and 2.2-4
are summarized in Table 2.2-5. DDT&E costs are shown in Table 2.2-6.

Total cost for the competition engine, RL10A-3-3A, are calculated to
be as follows:

) Total Cost (Constant $) $10,662.0M
) Total Cost (PV $) $ 2,302.4M
) Cost per Flight (PV §) $ 73.5M
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The competition cost estimates, along with the engine operations cost
summarized in Table 2.2-5 and engine DDT&E costs shown in Table 2.2-6 are used
in the economic anmalysis calculations in paragraph 2.2.4.4 below, Note that
the DDT&E cost of Alternative 1, in constant $, is the sum of Alternatives 3
and 4. The DDT&E cost of Alternative 2, in constant $§, is increased $65M over
Alternative 3 because of the stretched out, two step nature of the program.

TABLE 2.2-2 PROPELLANT REQUIREMENTS

I VEHICLE I PROPELLANT REQUIRED

| ENGINE TANK g1z | 45,000 | 55,000
| PERFORMANCE | (LB) | (LB)
| RL 10-IIB [ |

| 460 Isp | 44,997 [ 49,746
| 10C | |

| 475 Isp | 43,615 | 45,613
| Advanced | |

| 483 Isp | 41,370 | 38,896
| RL 10A-3-3a | I

} 440 Isp l 50,104% I 52,400

* Used to price 'competition', not a viable‘candidate

TABLE 2.2-3 PROPELLANT COST (REVISION 8 LOW MISSION MODEL)

| Alternative/ | Propellant in | Propellant Del ] Total
| Engine | MLB | Cost ($M PV) | Combined
| | GB SB | B SB | cost ($M PV)
| ] ] |

| Alternative 1 | | |

| RL 10-IIB | 1.6 | 835 | 1844

| Advanced- | 4,3 | 1009 |

| | | |

| Alternative 2 | | |

| 10C | 1.5 | 809 |

| Advanced | 4,3 | 1009 | 1818

| | | |

| Alternative 3 | | |

| Advanced | 1.4 | 758 ] 1767

| Advanced | 4.3 | 1009 |

| | | |

| Alternative 4 | | |

] RL 10-IIB | 1.6 ] 835 | 2126

| RL 10-IIB | 5.5 | 1291 {

| | |

| Alternative 5 | | |

| 10C | 1.5 | 809 ] 2009

| 10C | 5.0 : 1200 I

| |
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TABLE 2.2-4 ENGINE REPLACEMENT COST (REVISION 8 LOW MISSION MODEL)
Alternative | Engine [ Engine [ Total
| Replacements | Costs | Combined
| |  ($M PV) | Costs ($M PV)
| GB SB | GB SB |
1 ] |
Alternative 1 | | |
RL10-IIB ] 3 ] 1.95 J 9.18
Advanced ] 6 ] 7.28 |
| | I
Alternative 2 | | |
I0C | 3 | 2.93 | 10.21
Advanced | 6 | 7.28 |
| I |
Alternative 3 | | |
Advanced | 2 | 2,93 | 10,21
Advanced | 6 | 7.28 |
| | |
Alternative 4 ] | |
RL10-IIB | 3 | 1.95 | 17.15
RL10-IIB | 10 | 15.2 |
. | | |
Alternative 5 } | |
I0C ] 3 ] 2.93 | 19.63
10C | 12 | 16.7 |
| | |
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TABLE 2.2-5 ENGINE OPERATIONS COSTS ($M PV)

I10C (GB)
I0C (SB)

2009

| | Engine I
Alternative/ | Propellant | Replacement | Total
Engine | Cost | Cost | Costs
| : | |
| T ]
Alternative 1 | 1844 | 9.18 | 1853
RL10-IIB (GB) | I |
Advanced (SB) | | {
[ |
Alternative 2 | 1818 | 10.21 1828
10C (GB) I I
Advanced (SB) | |
[ |
Alternative 3 | 1767 ] 10.21 i 1767
Advanced (GB) | | |
Advanced (SB) { |
|
Alternative 4 | 2126 | 17.15 | 2143
RL10-IIB (GB) I I |
RL10-IIB (SB) : } :
Alternative 5 | ] 19.63 I 2029
| | ‘
| | |
| | |
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TABLE 2.2-6 ENGINE DDT&E ($M PV)

ALTERNATIVE DDT&E

Const $ PV

Alternative 1 $448 .2M $258 .7M
RL10-IIB (GB)
Advanced (SB)

Alternative 2 415. 254.8

I0C (GB)

Advanced (SB)

350, 251.1

Advanced (GB)

Advanced (SB)

Alternative 4 98,2 70.2

RL10-IIB (GB)
RL10-IIB (SB)
Alternative 5 175. 125.1
I0C (GB)

'
I
|
[
I
|
I
|
I
|
I
!
I
I
I
I
|
I
|
|
|
I
10C (SB) I

N

|
|
|
[
|
I
|
|
|
|
|
I
| Alternative 3
|
I
|
[
|
|
I
I
|
|
I

. 2.2.4.4 Economic Analysis

j A benefit analysis is shown in Table 2.2-7 for each engine option.

| This analysis is based upon the algorithm: Competition Operations Cost -

I Engine Operations Cost = Benefit, Table 2.2-7 shows the greatest operational
benefit, not including development cost, comes from the use of the advanced
engine.

A Return on Investment (ROI) analysis is shown in Table 2.2-8 for each
| engine option. This analysis provides a best buy rates by dividing the
benefit by the investment (DDT&E) costs. This algorithm is:

Competition Operations Cost - Engine Operations Cost _ 1 = por
Investment

The greatest ROI is offered by the R1L-10 engine, with the IOC engine second.

| The pay back economics factor represents the number of missions required

| to amortize the DDT&E investment for each engine option (Table 2.2-9). Table
2.2-10 identifies the number of missions required before the payback is
realized. The algorithm used is:

DDT&E Cost = Number of flts where CPF, = cost/flt, competition
CPF, - CPF, to pay back CPF, = cost/flt, engine option

The earliest investment pay back is achieved with the RL10 derivative engine,
with the IOC engine second,
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TABLE 2.2-7 ENGINE TRADE BENEFITS ($§M PV)

|
OPTION } COMPETITION OPS COST - OPTION OPS COST = BENEFIT
|
1 | 2302 - 1853 = 449
RL10/ADV |
|
2 | 2302 - 1828 = 474
I0C/ADV |
|
3 | 2302 - 1767 = 535
ADV/ADV |
| .
4 | 2302 - 2143 = 159
RL10/RL10 |
|
5 | 2302 - 2029 = 273
10C/10C |
|
TABLE 2.2-8 ENGINE TRADE ROI
[ |
| BENEFITS (PV) _j = RoI |
OPTION | "DDT&E (PV) |
[ i
| |
1 | 449 _ 3 = 0.73 |
RL10/ADV ] 258.7 |
| |
2 I 474  _ 1 = 0.86 |
I0C/ADV I 254.8 |
|
3 I 535 -1=1.13 |
ADV/ADV | 251.1 |
| |
4 | 159 -1 =1.26 |
RL10/RL10 | 70.2 |
| |
5 I 273 -1 =1.18 |
10C/10C | T125.1 I
| [
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TABLE 2.2-9 PAYBACK - MAIN ENGINE

| | |
} OPTION | MISSIONS |
' | |
| [ |
| 1 | |
| 1 RL10/ADV { 83 {
|

| 2 | I
| 2 10C/ADV | 78 |
| | I
| 3 | |
| 3 ADV/ADV : 68 :
|

| 4 | |
| 4 RL10/RL10 | 64 ;
| |

| 5 | |
| 5 10C/IOC = 66 :
|

Figure 2.2-1 provides a graphic portrayal of each engines payback
vis-a-vis the competition. It also shows a comparison of the payback among
the engine options. This figure shows the advanced engine providing the most
benefit over the 145 mission planning horizon. It also shows the RL10~IIB
engine having a quicker payback but providing the least advantage over the 145
mission scenario.
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2.2.5 Alternative Comparison

Table 2.2-10 provides a comparison of the economic analysis factors. Each
factor provides a different measurement of economic merit. All factors should
be weighted individually and together to determine the best engine
alternative., To aid this comparison, a scoring is provided where the most
favorable alternative is given a 10 and the other alternative a value in
relation to the alternative scored 10.

TABLE 2.2-10 ENGINE TRADE RESULTS

| ] ALTERNATIVE

| ECONOMIC |RL10/ADV |I0C/ADV |ADV/ADV |RL10/RL10 }I0C/IOC
| FACTOR | 1 | 2 | 3 | 4 | 5

| | | | | |

| | I [ ! |

| ROI (PV)* | 0.73 ] 0.86 | 1.13 | 1.26 | 1.18
| Benefits (PV)* | 449.0 | 474.0 | 535.0 | 159.0 | 273.0
| Investment (DDT&E) (PV)* | 258.,7 | 254.8 | 251.1 | 70.2 | 125.1
| Lcc (pv)* | 2112.0 |2083.0 ]2018.0 | 2213.0 ]2154.0
| Payback Missions | 83 | 78 | 68 | 64 ] 66

{ Cost per Flight (PV)* l 59.1 } 58.4 ; 55.1 } 66.2 } 62.2
|* Millions of dollars ($M) | { { { {

| |

’ SCORE

| | | | ] |

| ROI | 5.8 | 6.8 | 9.0 | 10.0 | 9.4
| Benefits | 8.4 | 8.9 | 10.0 | 3.0 | 5.1
| Investment | 2.7 | 2.8 | 2.8 | 10.0 | 5.6
| Lcc | 9.6 | 9.7 | 10.0 | 9.1 | 9.4
| Payback Missions | 7.7 ) 8.2 | 9.4 | 10.0 | 9.7
} Cost per Flight I 9.3 } 9.4 } 10.0 { 8.3 { 8.9

2.2.6 Conclusion

The engine trade scores in Table 2.2-10 show mixed results. Alternative 4
[RL10-1IB (GB)/RL10-IIB (SB)] scores high on investment and payback missilons.
ROI is also scored high for alternative 4, but this figure is tempered by the
relatively low benefit. The benefits score for alternative 4 is
disproportionately low vis-~a-vis the other alternatives,

Alternative 3 [ADV (GB)/ADV (SB)] scores high on benefits, cost per
flight, and 1life cycle cost, however the risk associated with this alternative

is greater than the other alternatives since it calls for the highest Isp
(483) and embarks on a new technology high performance engine.
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Alternative 5 [IOC (GB)/IOC (SB)] represents a good compromise. All
economic factors except LCC fall between alternatives 3 and 4 in scoring.
Alternative 5 does not have as great a risk as alternative 3 and can serve as
a stepping stone to the more efficient advanced engine. By starting out with
the same engine for ground based operations, experience and greater confidence
will be realized in the engine for initial space based operations and later
for man-rated operations.

The conclusion of this study is that the IOC engine should be developed
for both ground based and space based OTV operatioms.
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2.3 Man Rating and Reliability Trade Study

The objective of this study is to establish data to permit the selection
of a man-rating policy and then to implement that policy in the OTV
configurations. The mission model is dominated by unmanned missions so it 1is
also the objective of the study to define the redundancy configuration of
unmanned OTV concepts. This step in the 0TV concept definition is crucial
since it establishes the equipment lists and thereby has major influence of
design and weight.

2.3.1 Approach

The following approach is used in the analysis.

o Establish cost data to permit definition of a man-rating policy.

o] Incorporate reduﬁdancy needed to meet the policy in the manned QTV.

(o] Configure the unmanned OTV redundancy to be consistent with current
expendable stages. -

The first step in the approach established the sensitivity of life cycle
cost to various failure policies. The failure policies considered are shown
in Table 2.3-1. In this analysis, 368 GEO delivery mission are used and the
space based cryogenic reference configuration serves as the basis for
characterizing the configurations for each failure policy. The equipment
complement of the reference configuration is ad justed through a functional
Failure Modes Effects Analysis (FMEA) to be consistent with the failure
policies. This means examining the Failure Modes in each flight phase,
determining if a fallure met the policy and, if not, adding redundancy until
the policy is satisfied.

Step two reexamines the reference configuration through a FMEA to
specifically meet the stated man-rating policy.

Step three determines the consistency of the redundancy policy with
current expendable reliability capability.

TABLE 2.3-1 MAN-RATING POLICY CONCEPTS

Operational/Fail Safe

| | |

[ Concept | Failure Tolerance | Remarks

| | |

| B [

| Single String | 0 =

| |

| Fail safe | 1 | Assumes a rescue

| | | capability is avail-
| | | able for man-rating.
| | |

| Fail Operational/Fail Safe | 2 :

| |

| Fail Operational/Fail { 3 {

|

| | |
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2.3.2 Ground Rules

The following ground rules are used in the man-rating analysis:

o Reference Missions (Rev 7 Nominal Mission Model)

o 14 manned 14 klb up, 14 klb down GEO servicing missions.

o 354 unmanned 12,445 1b up, 4,711 1b down GEO servicing missions.

o Mission duration: 480 hours manned missions
51 hours unmanned missions

o Reference OTV design
Space based cryo - (Figure 2.3-1)
Single engine configuration 15 klb thrust 478.6 Isp
Dual engine configuration 7.5 klb thrust 471.3 Isp
Three engine configuration 5 klb thrust 475.8 Isp

2.3.3 Analysis

This section documents the results of the investigations to establish
manned and unmanned redundancy for the candidate OTV concepts.

2.3.3.1 Man Rating Policy

The redundancy required to implement the four failure policies is
shown in Table 2.3-2 together with the computed reliabilities, These data
form the basis for characterizing conceptual cryo stages. Feasible layouts
were sketched and weight statements (Table 2.,3-3) were developed. These data
are used for performance analysis to determine propellant required to capture
the GEO missions. The resulting performance data is presented in Tables 2,.3-4
and 2,3-5. The performance and the design data form the basis of the life
cycle cost analysis shown in Table 2.3-6 and Figure 2.3~-2, It is noted that
propellant requirements resulting from stage weight dominates the LCC
difference and that progression from single string to Fail Operational, Fail
Operational, Fail Safe is exponential in cost of mission capture.
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TABLE 2,3-2 FAILURE POLICY EQUIPMENT/RELIABILITY ALLOCATION

COMPONENT

Structure
L02 Tank

LH2 Tank
Lines § Fit
Hain Engine
TVC Act

SOL Yalves
M's

Check Valves
Filters
Therao VT

PU Valve
PNEU valve
ELE I/F SS
ACS Engine
6H2 Tank

602 Tank
Lines & Fit
SOL Valves
ob's

Check valves
Reg’s

KX

Turbo Pump
Aero ACTS
Fuel Cells
Radiators

FC Power Cond
Star Tracker
INU

Cosputer
fFlight Control

TLM Power Supply
CHD & Data Hdlr

Transponder
RF Amplifier
6PS Receiver
GPS Antenna
Sequencer
Deploy Tiser
Battery

Hotor Switch
Steer Antenna
Diplexer
¥eteor Shield
Niring

TOTALS

RELIABILITY DATA

0TV

SINGLE STRING

QUANTITY RELIABILITY

O R PO e ke RND RO R

—

[y

= RO RO G e e e e b e R RO R ket R b e ke e e O b b RO R N OO e e RO B £ RO PO B e R

0.9995201150
0.9935680930
0.9995680930
0.9995201150
0.5303000000
0.9391747400
0.9708263370
0.9990684160
0.9990404610
0.9999136040
0.9597078150
0.9907312220
0.9907312220

0.9996000000
0.99%5660930
0.9997840230
0.9995201150
0.9817368300
0.9991843330
0.9990404610
0.9943520100
0.9955610360
0.9966456380
0.9646402930
0.9943726790
0.9995201150
0.9952115020
0.9204459330
0.9531337870
0.9531337870
0.99521150620

0.9952115020
0.9252115020
0.9999568010
0.9252115020
0.9952115020
0.9331535030
0.9857031640
0.9993900000
0.9990404610
0.9995201150
0.9952115020

0.7200587420

RELIABILITY DATA

0TV

FAIL SAFE

QUANTITY RELIABILITY

O RO = RO D e

—

rD -

‘—“"M’\JW‘—‘.-‘N‘—*—-MMM’\,M’\)'\)'\}'—‘F—F—0\'\)»—4&“0\0\5—-'-—]'"‘5“'\}?0“0‘-&

0.9995201150
0.9995680930
0.9995680930
0.9995201150
0.9803000000
0.9991747400
0.9990788240
0.9990884160
0.9950816420
0.9999567990
0.9958613870
0.9907312220
0.9307312220
0.9999556410
0.9762151370
0. 9995650930
0.9997640230
0.9995201150
0.9999936300
0.9987527780
0.9960818420
0.9985610360
0.9999964300
0.9646402930
0.9949726790
0.9995201150
0.9952115020
0.9992087190
0.9978035580
0.9978035580
0.9999770700
0.9999985610
0.9999770700
0.9999087190
0.9999770700
D.9952115020
0.9999568010
{1.9999770700
0.9952115020
0.9931595030
0.9994241660
0.9999983220
0.9990404610
0.9995201150
0.9999770700

0.8636410530

37

RELIABILITY DATA

otV

0PS  SAFE

QUANTITY RELIABILITY

—
[ A - B I

-
Cd B = e B B e da R OO O OO 4

o r

Lonall oA S T - AN 75 B AL I PR RS B S BN - I S U Y SU R SV RN X RN SV VIR S BN LI - N SV R XN . Ny

0.9995201150
0.9995680930
0.9995680930
0.9995201150
0.9996119100
0.9999998290
0.9999998910
0.9988966090
0.9961673630
0.9999567990
0.9999957040
0.9907312220
0.9999995660

0.9998560070
0.9995680930
0.9997640230
0.9995261150
0.9979381290
0.9960818420
0.9999999980
0.9999999790
0.9999999930
0.9997523500
0.99999%4950
0.9999770700
0.9999991270
0.9996970610
0.9998970610

0.9999998900
0.9993991270
0.9999998900
0.9999998300
0.999%999980
0.9999998300
0.9999770700
0.9999532070
0.9990404600
0.9999998320
0.9990404610
0.9995201150
0.9999770700

0.9773908000

RELIABILITY DATA

0TV

0PS OPS SAFE

QUANTITY RELIABILITY

A e PO PO

— R —
O ~y & O~

o 3

w-—wu\nu'\?buwpaa:—a.5b»buuwo~bl\:mmc'\)-—-—-r\>mbo~.w:o~

0.9995201150
0.9995680930
0.9995680930
0.9952011500
0.9999698690
0.9993999960
0.9987048390
0.9999999990
0.9999999990

0.9399991360 -
0.9995680930
0.97976406230
0.9995201130
0.9971241430
0.9999999930

0.9999997930
0.9999998900
0.9992999310
0.9996970610
0.9998970610
0.9999999930
0.9999995620
0.9995329910
0.9999996900
0.9999995300
0.9999999990
0.9999999930
0.9999770700

0.9990404610
0.9395201150
0.9999998900

0.9819766330



TABLE 2.3-3 CONFIGURATION RELIABILITY VS WEIGHT
SPACE BASED CRYO - 84 KLB PROPELLANT LOAD
(Weight Lb)

|

| Single Fail Fo/

: Description String Safe FS FO/FO/FS
|

|orientation Control 299 352 430 550
| ACS Subsystem 227 280 350 478

| Rocket Engine Modules 40 40 40 80

|  Accumulators 62 62 62 62

| Mtg. Provisions - REMs & Acc. 10 10 10 14

| Conditioning Units/Mtg. Prov. 46 65 106 125

| Valves, Sw., Mtg. Prov., etc. 46 80 117 157

|  Tubing & Instl. 23 23 23 40

| Aerobrake Deployment 72 72 72 72

|  Actuators 48 48 48 48

} Support Struct. & Attach 24 24 24 24
|Electrical. . 443 443 660 801
| Battery 35 35 105 105

| Power Conversion & Dist. 150 150 200 250

| Fuel Cell System 45 45 90 135

| Reactant Tank ~ GHp 70 70 70 70

| Reactant Tank - GOp 45 45 45 45

| Radiator System , 33 33 65 98

| Water System 25 25 25 25

| Fuel Cell Pwr. Cond.

: Mounting Provisions 40 40 60 73

| Structure 3930 3930 3969 . 3992
| Basic Airframe 631 631 631 631

| LO; Tank 596 596 596 596

| LHy Tank 1051 1051 1051 1051

| Aerobrake 1412 1412 1350 1309

| Aerobrake Doors - Engine 140 140 241 305

| Boom - ACS REMs 12 12 12 12

| Boom - Avionics 23 23 23 23

| P/L Attach (8) 40 40 40 40

I Mod. RMS Grapple Fixture (5) 25 25 25 25

Continued
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TABLE 2.3~3 CONFIGURATION RELIABILITY VS WEIGHT SPACE BASED
CRYO - 84 KLB PROPELLANT LOAD (Continued)

(Weight Lb)
|
Single Fail Fo/
Description String Safe FS FO/FO/FS
|
Environmental Control 478 478 506 534
Thermal Protection 58 58 86 114
L0y Tank 0 0 0 0 |
LHy Tank 0 0 0 0 |
Engine Truss/Compt. 16 16 16 16
ACS Tanks 10 10 10 10
Prop. Lines, Comp., & etc. 32 32 60 88 |
Meteoroid Protection 420 420 420 420 |
' |
Main Propulsion System 1015 1015 1437 1643
Engine © 393 393 697 784 |
Propellant Feed System . 195 195 201 . 208 |
Pneumatic System 114 - 114 156 198 |
Pressurization System 99 99 123 147 |
Vent System 182 182 196 210 |
Actuators - Electrical 32 32 64 96 |
|
Avionics 353 489 709 924 |
Avionics 321 445 645 840 ]
Mounting Provisions 32 44 64 84 |
‘ . |
Dry Weight 651 6707 7711 -EZZZI
Contingency (15%) 978 1006 1157 1267]
{
Total Dry Weight 7496 7713 8868 9711}
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TABLE 2.3-4 MANNED MISSION PERFORMANCE DATA

Configuration: SB Cryo Ref (Fig 2.3-1)
Mission: Manned GEQ Servicing
Payload: Up 14 klb: Down 14 klb
| | | I | I [
| Failure | Dry | Igp | Thrust | No. | Propellant | Gross
| Policy | Weight |€= 640:1)| Engine | Engine | Weight | Weight
} | (1b) | (seec) | (1b) | | (1b) | _(1b)
| | ! | | |
|Single String| 7496 | 478.6 | 15000 | 1 | 69526 l 91022
| | | | | |
| | 1 | | | |
}Fail Safe | 7713 | 478.6 | 15000 | 1 | 70209 | 91922
I I I I | |
| | I 1 | | |
|FO/FS | 8868 | 476.3 | 7500 | 2 | 74526 | 97394
| I I | | I l
I | I | i | |
[FO/FO/FS | 9711 | 475.8 | 5000 | 3 | 77381 | 101092
I I | | | I I
TABLE 2.3-5 UNMANNED MISSION PERFORMANCE DATA
Configuration: SB Cryo Ref (Fig 2.3-1)
Mission: Unmanned GEQ Servicing
Payload: Up 12445: Down 4711
| | T I I | I
| Failure | Dry | Igp | Thrust | No. | Propellant | Gross
| Policy | Weight |@E= 640:1)] Engine | Engine | Weight | Weight
: | @ab) | (see) | (@Ab) | | (1b) | (1b)
| 1 I I | I
|single String| 7496 | 478.6 | 15000 | 1 | 38585 | 53816
I I | . | | I I
| | | | | | i
|Fail Safe | 7713 | 478.6 | 15000 | 1 { 39247 { 54694
| | | I I
| [ | I | | |
|FO/FS | 8868 | 476.3 | 7500 | 2 | 43128 | 59730
I | | I I | |
| | ] [ | | 1
|FO/FO/FS | 9711 | 475.8 | 5000 | 3 | 45816 I| 63261
| I | I I |
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These data resulted in the NASA establishing the following manned
safety policy:

No single credible failure shall preclude the safe return of the crew.

2.3.3.2 Man-Rating Policy Implementation

The Fallure Modes Effects Analysis to implement the man-rating policy
resulted in the redundancy shown in Table 2.3-7. It is noted that for a 480
hour mission the reliability of the manned configuration falls between the
Fail Safe and the Fail Operational, Fail Safe concepts shown in Figure 2,3-2,
This redundancy configuration meets the failure policy and provides a mission
success probability that is judged to be acceptable based on expected loss
costs, Table 2.3-8 summarizes the reliabjilities of the manned and single
string concept which meets the criteria of being as good as current expendable
stages. The unmanned 51 hour mission has good probability (0.966) of mission
success, A comparison of the equipment compliment for the manned and unmanned
concepts is shown in Table 2,3-9,

TABLE 2.3-8 RELIABILITY

| I 1

| Configuration | 28 pay Mission | 51 Hour Mission
l ' | |

| | |

| Manned | 0.946 | 0.996

| | |

| Unmanned (Single String) | 0.72 | 0.996

| | |

2.3.3.3 Man Rating Costs

The cost of man-rating is of course of interest., It is estimated at
this point in the development of the 0TV concept that the cost differences
between all unmanned and manned operations are based on the LCC data in Table
2.3-6 as follows:

Investment $400M
(DDTE & Production)

Operations $4370M
368 Missions

Operations costs ignore the reduced losses resulting from a higher
reliability. The expected losses for single string and the man-rated concepts
is given by

(1-R)N x Expected Loss Cost
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TABLE 2.3-7 MAN-RATED CONFIGURATION EQUIPMENT

B T NS ———

—— — ———  —— i W — — i et S o, St et e S e e e e e et e o et e, e, A S i

COMPONENT FAILURE QUANTITY RELIABILITY
RATE

Structure 1.00000000E~6 1 .9995201150
L0, Tank 4.,50000000E-7 2 .9995680930
LHy Tank 4 ,50000000E-7 2 ,9995680930
Lines & Fit 1.00000000E-6 1 .9995201150
Main Engine @ = =  —sc-eee—- 2 .9996119100
TVC Act 1.25000000E-5 4 .9999998290
SOL V1vs 4 .80000000E~6 10 .9999998910
QD's 1.00000000E-7 23 .9988966090
Check Valves 1.00000000E~6 8 .9961673630
Filters 4 .50000000E-8 6 .9999567990
Thermo VI 2.14200000E-5 8 .9999957040
Pu Valve 9.70000000E-6 2 .9907312220
Pneu Valve 9.70000000E-6 4 .9999995660
Ele. I/F SS 2.30000000E-8 4 .9999558410
ACS Eng = =—meme—ee 4 .9998560070
GHp Tank 4 .50000000E-7 2 .9995680930
GOy Tank 4 ,50000000E-7 1 .9997840230
Lines & Fit 1.00000000E-6 1 .9995201150
SOL Valves 4 ,80000000E-6 24 .9999999940
QD's 1.00000000E-7 43 .9979381290
Check Valves 1.00000000E-6 4 .9980818420
Reg's 5.90000000E-6 6 .9999999980
Hx 3.00000000E-6 2 .9999999790
Turbo Pump 7 .00000000E-6 3 .9999999930
Aero Acts 1.25000000E-5 6 .9997523500
Fuel Cell 1.05000000E-5 2 .9999999990
Radiators 1.00000000E-6 2 .9999994950
FC Pwr Cond 1.00000000E-5 2 .9999770700
Star Tracker 2.00000000E~5 2 .9998997535
IMU 1.00000000E-4 2 .9975935185
Computer 1.00000000E-4 2 .9975935185
Flt Control 1.00000000E-5 2 .999974826

TLM Pwr Supply 2.50000000E-6 1 .9987432903
Cnd & Data Hdlr 1.00000000E-5 1 .9949826293
Transponder 2.00000000E-5 1 .9899904325
RF Amplifier 1.00000000E-5 1 .9949826293
GPS Revr 1.00000000E-5 1 .9949826293
GPS Antenna 9.00000000E-8 2 ,9999999980
Sequencer 1.00000000E-5 2 .999974826

Deploy Timer 1.00000000E-5 2 .9999770700
Battery 1.43000000E-5 1 .9999845581
Motor SW 1.00000000E-6 2 .9999845581
Steer Ant 2.70000000E-6 2 .9999998320
Diplexer 1.00000000E~-6 2 .9990404610
Meteor Shield 1.00000000E-6 1 .9990000000
Wiring 1.00000000E-5 1 ,9999770700

Total L946547
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TABLE 2.3-9 COMPARISON OF UNMANNED/MANNED EQUIPMENT REQUIREMENTS

Equipment

Structure

L0y Tank

LHy Tank

Line & Fit
Main Engine
TVC Act

SOL Valves
QD's

Check Valves
Filters
Thermo Vt

PU Valve

Pneu Valve
Ele I/F SS
ACS Eng

GHp Tank

GOy Tank
Lines & Fit
SOL Valves
QD's

Check Valves
Reg's

Hx

Turbo-Pmp
Aero Acts
Fuel Cell
Radiators

FC Pwr Cond
Star Tracker
IMU

Computer
Flight Control
TLM Pwr Supply
Cmd & Data Hdlr
Transponder
RF Amplifler
GPS Receiver
GPS Antenna
Sequencer
Deploy Timer
Battery

Motor SW
Steer Antenna
Diplexer
Meteor Shield
Wiring

Manned

N

Pl )

RPENMNONEFEFMDNDMODNONEHPBERPRRERERBEDODDDNDDDNNNDNNDNOWONNOICSWLWESERENDEPEEAENOOTDWOPRNENDNPR

Unmanned

FRNROMNBERRHFHERBROMNNNRFRRERRREBRORRRNNNORENERONNEFROOSENRENN R
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The expected cost for an average loss was obtained as follows:

Payload Value $194M
Payload Delivery to GEO (20 klb x $2K) 40M
0TV Fuel to GEO (64.5 klb x $2K) 129M
Operations 5M
Worst Case Cost $368M
Expected Loss Cost (W/C x 50%) $184M

The reduction of worst case loss cost by 50% reflects an average loss
cost across all the missions. Computing the losses for simple string and
man~rated we get:

Single String:

Manned $ 720M
Unmanned $2210M
$2930M
Man Rated:
Manned $139M
Unmanned $261M
$200M

Now it is clear that in combination of these cost factors the cost of
man-rating is

Investment $400M
Operations $4370M + 400M - 2930M = 1840M
. ‘ which is equivalent to about $5M per manned

mission (operations cost/missions)

These data should be viewed as only indications of the cost of
man-rating. However, based on this relative immature concept data, the
increased flexibility of manned mission capability is achieved for a modest
increase in cost per flight,

2.3.4 Conclusion

Reliability figures are based upon the NASA policy that "no single
credible failure shall preclude the safe return of the crew”. The resulting
reliability requirement for a manned 28 day mission is 0.946 and for a manned
51 hour mission is 0.996. The resulting unmanned single string reliability
requirement for a 28 day mission is 0.72 and for an unmanned 51 hour mission
is 0.966. The cost of upgrading from unmanned to man-rated is $2.2B.

The question of evolutionary strategy is not answered by this analysis;
whether to start single string and then transition by block change to a
man-rated OTV or start out man-rated. These decisions are properly a part of
the evolution strategy trades inm Section 2.7.
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2.4 Propellent Delivery Trade Study

The purpose of this trade study is to select a preferred method for
delivering cryogenic propellant to LEO for use in space based QTV operations.
At issue are two questions: would a new propellant delivery system be more
economically viable than using the existing Space Transportation System (STS)
cargo bay; and, if so, what new system would be the most economically viable,

This study 1s a necessary prerequisite for the evolutionary strategies for
the acquisition of an OTV that captures the mission model. (Ref paragraph
2.7.3, Preferred Overall Evaluation). The selection of the preferred
propellant delivery approach is a key issue in the economics of establishing
0TV as a viable venture. The single most costly factor is delivering
propellant to LEO and therefore the cost per pound of the delivery system has
a major influence on whether the OTV will be competitive with existing stages
and existing LEO delivery methods.

The study addresses only cryogenic propellant and considers only the Aft
Cargo Carrier (ACC) for use in propellant scavenging. If storable propellant
had been selected over cryogenic propellant, then a follow-on propellant
delivery trade would have been required using storable propellant as a basic
consideration. (Ref paragraph 2,6, Storable versus Cryogenic Trade Study).
Likewise, 1f the cargo bay had been selected over the ACC for propellant
scavenging, then a follow-on propellant delivery trade would have been
required using cargo bay scavenging as a basic consideration (Ref paragraph
2,7.2, ACC versus Cargo Bay for OTV Delivery/Scavenging).

2.4.1 Approach

The approach used in this trade is to create a simplified delivery problem
and evaluate the economic benefits of the delivery concepts, The fundamental
decision involved in the trade is whether it is justified to embark on an
acquisition of a tanker, a scavenging system, or both; or whether to use the
STS as a delivery system, The following cost benefit [i.e., Return on
Investment (ROI)] ratio will be the principle measure.

STS PROPELLANT DEL. COST - OPTION PROPELLANT DEL. COST -1 = ROI

OPTION INVESTMENT COST
If the ratio is negative, the option is not a viable economic venture.
If the ratio is zero, the venture retrieves the investment but is not
profitable. A positive ratio indicated the venture is profitable.
2.4.2 Ground Rules and Assumptions
The ground rules and assumptions listed below are used in the trade

study. Costs are in millions of constant 1985 dollars, unless otherwise
indicated as present value [PV] dollars.
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o Mission Traffic: 10 missions per year, 1999-2010
o Configuration: 55 klb stage with 483 sec Isp
o Payload: 12.4 klb to GEO
24 klb return

) Propellant: LHy/LOj
o Propellant Rqmt: 41.37 klb per mission
o Total Prop. Rqmt

(41370 x 120 missions): 4.9644 mlb

Scavenging

Scavenging System: STS ACC

Scavenging System Acquisition: 1995-1998

STS Scavenging Flights: 328

Prop. Scavenged/Flight: 14 klb

Total prop. Scavenged: 4.592 mlb

DDT&E: $212M

DDT&E [PV] ($212M x 2.16 / 4 yrs): $114.5M
Propellant Delivery Cost: $1167M

Cost per flight ($1167M / 328): $3.6M
Propellant Delivery Cost [PV] ($1167M x 1.97 / 12 yrs):
$191.6M (see Section 1.3 for uniform discounting)

© 000000 OO0 O

STS Cargo Bay

DDT&E: $4M

DDT&E [PV]: $2.2M

Prop. Delivery Rqmt., 4.9644 mlb
STS Delivery Capacity: 65 klb
STS Flights

(4.9644M/65 k1lb): 76.4

STS cost per flight: $73M
Propellant Delivery Cost

(76.4 x $73M): $5577

Propellant Delivery Cost [PV]
($5577M x 1.97 / 12 yrs): $915.4M

O 00 O0O0O0OO0OO

(=]

SDV Tanker

o SDV Tanker Acquisition: 1995-1998
o DDT&E: $2200M
o  DDT&E [PV]a
($2200 x 2.16 / 4 yrs): $1188M
o Propellant Delivery Rqmt: 4.9644 mld
o SDV Delivery Capacity: 181 klb
o SDV Flights
(4.9644M / 181 klb): 27.4
) SDV Cost per Flight: $75M
o Propellant Delivery Cost
(27.4 x $75M) $2055M
o Propellant Delivery Cost [PV]
($2055 x 1.97 / 12 yrs): $337.4M
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0 STS Cargo Bay/Scavenging

DDT&E ($4M + $212M): $216M

o
0 DDT&E [PV] ($2.2M + $114.5M): $116.7M
o Scavenge Prop. Delivery: 4,592 mlb
o STS CB Prop. Del.

(4.9644M - 4,592M): .372 mlb
o STS Flights (0.372M/65 k1b) 5.7
o STS CB Del Cost (5.7 x $73M): $416M
) ACC Scavenging Prop. Del, Cost: $1167M
o) Total Prop. Delivery Cost

($416 + $1167): $1583M
Total Prop Delivery Cost [PV]
($1583M x 1.97 / 12 yrs): $260.2M

[+}

0 SDV Tanker/Scavenging

DDT&E ($2200 + $212M): $2412M
DDT&E [PV] ($1188M + $114,.5M): $1302.5M
Scavenge Prop. Delivery 4,592 mlb
SDV Tanker Prop. Delivery
(4.9644M - 4.,592M): .372 mlb
SDV Tanker Flights
(0.372M/181,000): 2.1
o SDV Tanker Del. Cost
(2.1 x $75M):  $157M
o ACC Scavenging Prop.
Delivery Cost: $1167M
. O Total Prop Delivery Cost
($157 + $1167): $1324M
o Total Prop. Delivery Cost [PV]
($1324M x 1.97 / 12 yrs): $217.0M

O 00 O

o

2.4.3 Alternatives

The following alternative methods for propellant delivery to LEO are
considered in the trade study.

0 Alternative 1 - STS/scavenging.

This option provides cryogenic propellant for use at LEO by
combining two propellant delivery methods. One, excess propellant,
left over from STS launches, 1s acquired through a scavenging system
contained in the ACC. This propellant, in turn, is off loaded at the
Space Station.

The second method uses tanks carried in the STS cargo bay to

carry additional propellant to the Space Station to complete the
on~orbit propellant availability requirements,
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0 Alternative 2 - Shuttle Derived Vehicle (SDV) Tanker.

The tanker used for this alternative is a vehicle specifically
designed to launch heavy payloads into orbit. This vehicle, when
configured as a tanker, is capable of delivering large amounts of
propellant (181 klb) to the Space Station.

0 Alternative 3 - Tanker and Scavenging.

This alternative combines the scavenging concept with a tanker
to provide propellant at the Space Station.

0 Competition

The competition for the alternatives used in this study 1is
propellant tanks carried in the STS cargo bay. This option is
selected as the competition since technology for the concept is
presently available.

2.4.4 Cost of Alternatives

An economic analysis for each alternative is shown for benefit in Table

2.4-1 and for ROI in Table 2.4-2. The data in these tables are extracted from
the list of ground rules and assumptions in paragraph 2.4.2 and converted to
discounted dollars.

The present value calculations for discounted dollars assumes a constant

distribution of cost and therefore can be simplified to a single factor for
propellant delivery and for investment (i.e., DDT&E).

|
|
I
I
I
I
I
!
I
I
I
|
|

o Propellant delivery factor: 1.97

o Investment factor: " 2,16

TABLE 2.4-1 BENEFITS (DISCOUNTED $M)

Alternative | STS Prop. Option Prop.
| Del. Cost - Del. Cost = Benefit
T
1 | $915.4 - $260.2 = $655.2
STS/Scavenging |
I
2 | $915.4 $337.4 = $577.0
SDV Tanker |
I
3 | $915.4 $217.0 = $698.4
Tanker/Scavenging|
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TABLE 2.4-2 RETURN ON INVESTMENT
(Discounted $M)

) I | Investment | I

| Alternative | Benefit | (DDT&E) | Adj. | ROI

| | | ]

| |

| 1 |

ISTS/Scavenging Il(655.2 /  116.7) - 1 = 4,6

| 2 |

;SDV Tanker | (577.0 / 1118.0) - 1 = 0,5
[

| 3 |

:Tanker/Scavenging} (698.4 / 1302.5) - 1 = -0.5

| |

2.4.,5 Alternative Comparison

The results of the propellant delivery analysis are summarized in Table
2,4-3, Alternative 1, scavenging combined with STS cargo bay propellant
delivery, 1is clearly the most advantageous option. The ROI analysis shows a
negative value for both Alternatives 2 and 3 indicating that they are not
economically viable ventures. The relatively low investment cost of
Alternative 1, has a significant effect on the trade study results since it is
also a factor used in the ROI and LCC calculations.

The benefit analysis shows a fairly even score among the alternatives with
the greatest advantage lying with Alternative 3, SDV/Scavenging. Scavenging,
utilized by Alternatives 1 and 3, boosts the benefit score of these
alternatives over that of Alternative 2,

The difference in scores between Alternatives 1 and 3 are due to the bulk
delivery modes of the options, i.,e., cargo bay versus SDV Tanker. As can be
seen the SDV Tanker provides the greater benefit of the two.
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TABLE 2.4-3 PROPELLANT DELIVERY RESULTS
(Discounted $M)

| T | |

I OPTION

| Economic | 1 2 3

} Factor | STS/Scavenging SDV/Tanker Tanker/Scavenging
|

| [

I ROI | 4.6 -0.5 -0.5
|

| Benefits | $655.2 $577.0 $698.4

[ i

| Investment |

| (DDT&E) | $116.7 $1188 $1302.5

| |

| LcC | $376.9 $1525.4 $1519.5

| (DDT&E Ops Cost) |

| |

| T

| SCORES |

| |

| [

| ROI | 10 0 0

| |

| Benefits | 9.3 8.2 10

| |

| Investment | 10 1.0 .9

| |

| Lce | 10 2.5 2.5

| |

2.4.6 Conclusion

Alternative 1, scavenging combined with STS Cargo Bay propellant delivery,
provides the most favorable economic means of delivering propellant to LEO for
use in OTV operations. The investment costs assoclated with the development
of SDV tanker makes the use of Alternatives 2 and 3 uneconomical when applied
to the Revision 8 Low Mission Model.

It shall be noted that Alternatives 2 and 3 would become more attractive
if a greater demand for bulk delivery of propellant to LEO existed, or if the
SDV tanker DDT&E was shared with another program (e.g., Space Station). As
shown in the study, scavenging provides the most economical means of
delivering propellant to LEO, however, the amount of propellant acquired by
the scavenging is limited. Space based OTV propellant requirements under the
Revision 8 Low Mission Model are mostly satisfied by the scavenglng concept.
Delivery of the relatively small amount of propellant remaining to meet the
on-orbit demand can be satisfied by the STS for less than the cost of
developing a new more efficient propellant delivery vehicle. If mission
requirements change whereby greater quantities of propellant must be delivered
to LEO in bulk, then the use of the SDV tanker becomes more attractive,
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The bulk delivery requirement can be affected in two ways. One by a
greater demand for propellant at LEO to satisfy OTV operational needs; and,
. two by the percentage of this demand supplied through scavenging decreasing.
In essence, the economic benefit received from a greater number of bulk
propellant delivery missions would be needed in order to offset the investment
cost of a new tanker vehicle,
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2.5 Tank Farm Trade Study

The purpose of the tank farm trade study is to determine the most
advantageous means for storing propellant in the vicinity of the Space
Station. A free-~flying propellant farm, a tethered propellant farm, and a
propellant farm located on the Space Station were considered. The technical
trades conducted are reported in Volume IV, Section 8.2, of this Final
Report. A scoring based on objective and subjective considerations was
conducted and the Space Station location was a clear winner for both storable
and cryogenic propellants. :

We baselined the on-station tank farm as the lowest cost and lowest risk
solution, and this approach is reflected in subsequent analyses.
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2.6 Storable versus Cryogenic Propellant Trade Study

The purpose of this trade study is to select between storable propellant
and cryogenic propellant for use by the OTV.

2.6.1 Approach

This trade includes an analysis of DDT&E, production, and operations
costs. These costs are converted from constant dollars to present value
dollars and run through return on investment, benefit, and investment analyses
in order to provide discriminators useful for making a selectionm.

2.6.2 Ground Rules and Assumptions

Data used for this trade study were developed under the Revision 7 Nominal
Mission Model. The cost of propellant when the mission calculations were run
was $500/1b for cryogenic and $600/1b for storable. This cost includes
production and delivery to LEO. Although these data were developed using
Revision 7, we believe they provide a realistic enough representation of
Revision 8 propellant cost to make a selection between the cryogenic and
storable propellant options.

Qther ground rules and assumptions used in the study follow:

o All costs are in 1985 dollars and exclude fees.

0 All cost estimates reflect midterm data (weight, mission model, etc)
generated for the cryogenic and storable stage families.

o DDT&E

Maximum shafing of engineering & tooling efforts between stages was
assumed where applicable.

Ground test hardware includes Static Test Article (STA), Ground
Vibration Test Article (GVTA), Main Propulsion Test Article (MPTA) and
Functional Test Article. ‘

Dedicated flight tests required for the ground based 0TV; no space
based configuration flight test assumed.

Flight test articles refurbished to operations spares.

Space Station assessment limited to tank farm impacts.
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Production

Each unique stage assumes an initial production run of 2 units (1
operation, 1 spare (flight test/GVTA Article refurbished for ground
based).

92% Wright learning curve assumed; learning shared across stages.

Transportation charges for space based production hardware included in

production (68.5M/STS £1t) (1.5 flts/full SB stage)
Operations

Payload delivery costs assumed the same, transportation costs not
included; no reflights included.

Propellant usage based on 421 missions extracted from the midterm,
nominal mission model (32 GB, 389 SB)

Eastern Test Range Launch only; STS Cost Per Flight (CPF) = $68.5M; Aft

Cargo Carrier CPF = 2.3M
Mission operations at 35 man-yrs/yr

Full STS user charge for GB OTV; return flight assumed available;
storable pays additional transportation charges for the Apogee Kick
Motor.

Space Based

- IVA = 80 hrs/mission @ $16K/hr; EVA = 4 hrs/mission @ $48K/hr.

- 2 OMV uses per SB mission per MSFC guidelines (propellant use
approx. 500 1b per mission)
Mission Ops - $16K/hr
Hardware delivery assumed at 1 STS flight per stage (less brake).

Aerobrake Life = 5 flights; transportation at 0.33 STS flts./brake
Engine Life = 20 flights; 0.1 STS flight/engine

Avionics, Environmental Protection System, structural 1life = 40
flights; 1 STS flt/replacement

Facilities

As clear discriminators for ground based facility cost estimates were

not identified at this time, the same requirements were assumed for
both items.
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2,6.3 Alternatives

The two alternatives identified for this study are storable propellant and
cryogenic propellant, The storable propellant considers the combination of
N204/MMH. The cryogenic propellant considered the combination of liquid
hydrogen and liquid oxygen.

2.6.4 Cost of Alternatives

The life cycle cost of storable and cryogenic propellants is summarized in
Table 2.6-1 and shows the cost for DDT&E, production, and operations in both
constant and discounted dollars, It should be noted that cryogenic costs are
lower than storable by a factor of 21 percent in constant dollars and 13
percent in discounted dollars, This indicates that the advantage cryogenics
hold over storable is reduced as the cost of providing propellants at LEO is
reduced. This is significant since the primary cost of the OTV is
propellant., If propellant were free, the DDT&E and production costs would be
the discriminators and, as indicated in Table 2.6-1, the two alternatives
would be essentially equal.

Table 2.6-2 provides a breakout of DDT&E and shows the delta costs for
each element., Note that tank farm costs are included. Conceptual designs and
equipment lists were developed for the tank farms to determine if this
element, along with propellant costs, is a major discriminator. As can be
seen, this is not the case since there is only a $21M difference in favor of
cryogenic propellants.

Table 2,6-3 provides a breakout of operations cost and shows the delta
cost for each element. The table also provides a cost per flight for using
storable propellant ($61.24M) and for using cryogenic propellant ($45.50M).

Placed at the end of this trade study section are Tables 2.6-7 and 2.6-8
which contain spread sheets that show greater detail on how LCC were developed
for the OTV using both storable and cryogenic propellants., Table 2.6-9, also
placed at the back of this section, provides a spread sheet of 0TV competition
costs, Competition costs represent costing of the mission model using the STS
with existing upper stage vehicles or derivatives thereof. The competition
cost totals shown at the bottom of the spread sheet are also placed on Tables
2.6-7 and 2.6-8 for ease of comparison.

Table 2.6-4 shows the calculations for a benefit analysis., Calculations
for return on investment are shown in Table 2.6-5.

A payback computation is graphically shown in Figure 2.6-1. This
computation is based upon a propellant cost of $500/1b for cryogenic and
$600/1b for storable-propellant. The delta propellant cost per pound for
onorbit propellant is due to the difference in STS delivery requirements and
scavenging opportunity. The delta reflects a conservative estimate of the
additional storable propellant requirements and subsequent higher propellant
unit cost of the scavenging/delivered mix. As shown in the Figure, the
cryogenic propellant holds an advantage over storable propellant. This
advantage will change proportionally with the amount of propellant required,
thus a more optimistic mission model would show a proportionally greater
advantage for cryogenic propellants.
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TABLE 2.6~1 STORABLE VS CRYOGENIC STAGE TOP LEVEL COMPARISON

CONSTANT $M STORABLE CRYO DELTA
DDT&E 1238.23 1364.73 -126.50
PRODUCTION 314.28 237 .84 76.56
OPERATIONS 8879.45 6598.15 2281.30
TOTAL 10431.96 8200.72 2231.24

Cryo % Reduction = 21
DISCOUNTED $M STORABLE CRYO DELTA
DDT&E - 586.90 670.40 -83.50
Production 74.60 56.40 18.20
Operations 1956.60 1552.00 404.60
TOTAL LCC 2618.10 2278.80 339.30
Cryo % Reduction = 13

Competition LCC*

25365 (Constant $M)

4974 (Discounted $M) (See Table 5.7.3-23)

*Does not include DDT&E
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TABLE 2.6-2 STORABLE VS CRYOGENIC STAGE DDT&E COMPARISON (CONSTANT $M)

1

: STORABLE | CRYOGENIC | DELTA
| I
D&D 398.10 491.50 -93.40
ASE/GSE/SSE 39.80 39.30 0.50
Software 71.80 69.00 2.80
Tooling 19.40 19.50 -0.10
SE&I 91.80 108.00 -16.20
Test Hardware 128.50 142,50 -14.00
Test Ops 22.50 26.10 =3.60
Test Fixtures 3.90 4.50 -0.60
Prog Manage. 46 .60 54,00 =7.40
Stage DDT&E 822.40 954,40 -132.00
Level II
PM, SE&I, Test 156.30 171.80 -15.50
Test Flts 68.50 68.50 0.00
Tank Farm 191.00 170.00 21.00
Program Management 16.60 14.80 1.80
D&D/SE&I 141,80 122.20 19.60
Tooling 15.80 13.70 2.00
Test Hardware 5.30 9.60 -4.,30
Test Ops/Fixtures 11.50 10.30 1.20
DDT&E Total 1238.20_ 1364.70 ~126.50
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TABLE 2.6-3 STORABLE VS CRYOGENIC STAGE OPERATIONS COMPARISON (CONSTANT $M)

| 1B ]
| STORABLE | CRYOGENIC | DELTA
[ | I
PROP OPS/GB DELIVERY 7363.80 5217.60 2146.20
Mission OPS 44,10 44,10 0.00
Iva 145.30 145,30 0.00
EVAa 21.10 21.10 0.00
Stage Hw Refur/Spares 55.30 49.00 6.30
Eng Replacement 15.50 18.30 -2.80
Aero Replacement 100.70 162.10 -61.40
OMV Use 66.70 66.70 0.00
Prog Management 72.00 62.80 9.20
Sustaining Eng 32.30 35.00 -2.80
TOTAL 7916.70 5822.0 2094.,70
STS Del of 309.90 220.80 89.10
Eng & Str
& Prod Hdw
STS Del of 607.30 498,60 108.70
Aerobrake
Tank Farm Ops 45.60 56.80 -11.20
*Compressor Repair 6.10 8.90 - 2,80
*Ma jor Overhaul 22,30 18.80 3.50
EVA for C/0O 17.20 17.30 - 0.10
Boiloff - 11.80 -11.80
TOTAL OPS 8879.50 6598.20 2281.30
CPF COMPOSITE 61.24 45,50 15,73

—— ———— —— o—— — o —— — —— —— ——— —— —— d— — —— t——— o oo T~ s ) St S et S— —

* Includes related EVA/IVA

TABLE 2.6-4 STORABLE/CRYOGENIC BENEFIT (DISCOUNTED $M)

[ T Competition | Propellant [

| Alternative | Cost | Cost | Benefit
{ I | |

| Storable 4974 - 2618 = 2356

|

| Cryogenic 4974 - 2278 - 2696

|
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TABLE 2.6-5 STORABLE/CRYOGENIC STAGE RETURN ON INVESTMENT

| | Competition | Propellant | |

| Alternative | Cost Cost | DDT&E | ROI
| | I | |

I

| Storable ((4974 - 2618) / 586.9) - 1 = 3.01
|

| Cryogenic ((4974 -~ 2278) / 670.,4) -1 = 3.02
|
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2.6.5 Alternative Comparison
Table 2.6-6 provides a comparison of the principal economic factors. It

also provides a score ranking the most favorable alternative 10 and the other
alternative with a value relative to the better option.

Table 2.6-6 OTV Storable Versus Cryogenic Propellant Trade Results

] Economic ]

| Factor | Storable Cryogenic
[ |

! T

| Return on Investment | 3.01 3.02
[ [

| Benefits | 2356.0 2696.0
| |

| Investment | 586.9 670.4
| |

| T

| SCORE |

| |

| . T v

| Return on Investment - | 9.9 10

f |

] Benefits | 8.7 10

| |

{ Investment | 10 8.8

| |

2.6,6 Conclusion

The cryogenic alternative is recommended as the preferred OTV propellants.
The return on investment between the two options is essentially the same,
however the cryogenic alternative advantage becomes greater as propellant
requirements increase. This option therefore provides greater flexibility for
growth,

The benefit analysis places the advantage on the side of the cryogenic
propellant. The main disadvantage for cryogenic when comparing the two
options lies in DDT&E costs. This difference, however, is not significant and
both options can be considered to be affordable.

It should also be noted that, if OTV requirements change to include

extended dwell time on orbit, the use of storable propellants should be
revisited.
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2.7 Evolutionary Strategy Trade Study

The purpose of the evolutionary trade study is to select an Orbital
Transfer Vehicle (0OTV) development path that will accommodate all missions set
forth in Revision 8 of the Marshall Space Flight Center (MSFC) Low Mission
Model. The optioms cover both ground based and space based operations as well
as unmanned and manned missions. Six options which provide the strategies
studied are illustrated in Figure 2,7-1. These same options are shown with
time phasing in Figure 2.7-2.

Options 2 and 6 are identical except that during ground based operations
Option 2 employs an Aft Cargo Carrier (ACC) to deliver the OTV to Low Earth
Orbit (LEO) and Option 6 uses the cargo bay. Selecting between these two
options becomes more complex in that the investment cost for developing the
ACC should be shared with the scavenging operation if scavenging is to also
use the ACC.

Due to the similarities and complexities associated with Options 2 and 6,
they are addressed first in a subtrade study to eliminate one or the other
from contention, This subtrade is designated as Step 1. Step 2 of the trade
study evaluates the surviving option from Step 1 along with the other
remaining trade study options. From this group, the option representing the
preferred overall evolutionary strategy is selected. .
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1

I

1. All space

based 0TVs are delivered in the STS cargo bay.

|GB |sB IMAN-
:IOC EIOC lRATED
OPTION {94 95 96 97 98 {99 00 01 02 03 04 05 06 07 {08 09 10
| ] |
| =---—- GBU | SBM |
I | I
| | |
| ~=-—- GBU | SBU | —=SBM-—
I | I
| | |
| DELETED | I
| | I
| | |
| 1 I
| ———- EXU | SBM |
| | |
| | [
| ——- EXU I SBU | -=SBM-——
I : | I
| | |
| --- GBU (CB) -— | SBU | --SBM——-
I | I
| | |
| GBU | GBU (55K)—-—==—n | —-GBM-—
[ [ I
LEGEND:
GBU 45 k1lb Ground Based Nonman~rated
SBU 55 klb Space Based Nonman-rated
SBM 55 k1b Space Based Man-rated
GBM 55 klb Ground Based Man-rated
EXU Expendable Nonman-rated
CB STS Cargo Bay
ACC Aft Cargo Carrier
NOTE:

2. All ground based OTVs are delivered in the ACC except as noted in

Option 6.

FIGURE 2.7-2 OTV CONFIGURATION EVOLUTION
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2.7.1 Ground Rules and Assumptions

Ground rules and assumptions which apply to the trade study are shown

below,

o

They are consistent with the 0TV ground rules provided by the MSFC.

GENERAL
- Constant fiscal year 1985 dollars excluding fee and contingency
- Discount rate of 10% per year -

Research and Technology (R&T)
- Assumed $100M for Aeroassist Flight Experiment (AFE) flight and $59M
for advanced engine technology base for both candidates

Design Development Test and Evaluation (DDT&E)

- Ground test hardware includes Static Test Article (STA), Ground
Vibration Test Article (GVTA), Main Propulsion Test Article (MPTA),
and functional test article: Follow-on stages include ground test
hardware as required.

- Dedicated flight test required for initial stage: includes Space
Transportation System (STS) delivery and propellants.

- Flight test article and GVTA of initial stage refurbished to meet
operational requirements.

- Ground Based (GB) ACC version includes ACC DDT&E ($163M); CB version
includes $27M impact for orbiter bay modifications

- All options include DDT&E for payload (P/L) clustering structure

- Maximum sharing of engineering and tooling effort between stages
assumed where applicable (evolutionary approach).

- Supporting program DDT&E included per ground rules where applicable
(e.g., Space Station accommodations and tanmk for ACC and propellant
scavenging).

PROVISIONS
- Each evolutionary stage requires two stages at Initial Operatiomnal
Capability (IOC) (1 operations unit, 1 spare)
-~ Refurbished DDT&E hardware credited to initial option stage
— No learning on stages assumed due to small production run
-- Each evolutionary option stage requires 2 P/L clustering
structures (1 operations unit, 1 spare)
—— Transportation charges of production hardware allocated to
operations

OPERATIONS
- P/L transportation costs included for all optioms according to STS
program user charge guldelines

—- 1994-1998 P/L's and GB OTV stages were considered an integral P/L
unit and charged accordingly

—- Space Based Payloads (1999-2010) were charged according to user
charge guidelines.

-- Option 7 (GB evolutionary option) P/L's were charged in the same
manner as 1999-2010 Space Based (SB) payloads (less than 6% of
the missions may potentially be manifested with the stage
hardware on a single shuttle)
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OPERATIONS (Continued)

STS user charge of $73M per flight, ACC charge of $2.3M where

applicable.

Low Mission Model (145 flights)

Ground based Mission operations at 35 Man-yrs/yr throughout

operations period

Expendable stages (Options 4 & 5, 1994-1998)

—-- Operations (OPS) cost includes stage Cost per Flight (CPF) and
STS delivery of stage hardware and mission payload

Ground Based 0TV

-- Operations costs consistent with ACC - CB GB OTV Trade Study

-- GB OTV stages for Option 7 (1999-1010) assume 1 shuttle flight
per mission for hardware delivery

Space Based OTV

~~ Space Station Intra Vehicular Activity (IVA) calculated on a per
mission basis at $15K/hr

== 2 Orbital Maneuvering Vehicle (OMV) uses per mission cost
according to study ground rules at 2 hrs out, 1.5 hrs back and
average of 500 1b propellant per mission

-- No Space Based Mission OPS or Extra Vehicular Activity (EVA)
required

-—- STS costs include delivery of initial operational unit and spares
as required

-- On-orbit propellant costs  are composite average of scavenged and
STS tanker costs, determined by option usage ($330 to $360/1b)

Operations Spares

—= STS transportation applicable only to SB stages

-- Aerobrake Life = 5 flights; 0.34 STS flts/brake

-~ Engine Life = 10 flights; 0.1 STS flt/engine

-- Avionics, EPS, STR Life = 40 flights; 1 STS flt/replacement

PRODUCTION

Production for both options includes 2 P/L clustering structures (1
operations, 1 spare)

No stage production is required due to refurbishment of DDT&E
hardware and low flight rates.

FACILITIES

Facilities costs include

—— Provisions for manufacturing facility for initial stage and
refurbishment hardware

—- Dedicated 0TV Launch Processing Facility [Kennedy Space Center
(xsc)]

-~ Mission operations area at existing KSC facility

BENEFITS

STS benefits are based on 50% of the calculated weight and volume
potential after the ground based OTV and STS payloads are manifested.
Each of the P/Ls were manifested with stage for both an ACC and a
cargo bay OTV concept. The amount of total volume and weight per-
formance remaining represented potential STS P/L capability that
could be utilized for other non-OTV P/Ls. The 50% factor represents
a rough probability of how much of this additional potential might
be used.
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2.7.2 Step 1: ACC versus Cargo Bay for OTV Delivery/Scavenging.

As discussed in the introduction to this trade study the purpose of this
subtrade analysis is two fold. One is to select either Option 2 (OTV in ACC)
or Option 6 (OTV in STS Cargo Bay) as the preferred evolutionary OTV
development strategy (Figure 2.7-2). The other is to select between the ACC
and the STS cargo bay the most economlic way to deliver the OTV to LEO during
ground based operations and to deliver scavenged propellant to LEO during
space based operations. OTV delivery and scavenging are correlated and the
preferred delivery mode depends on the combined economics of the two systems,
This selection, in turn, will provide the answer to the first part of the
analysis and thus select either the ACC (Option 2) or the STS cargo bay
(Option 6) as the preferred OTV evolutionary developmental strategy. The
following therefore addresses the economy of OTV delivery and scavenging.

2.7.2.1 OTV Delivery/Scavenging Alternatives

Four possible combinations exist for delivering the 0TV or scavenged
propellant to LEO. The matrix in Figure 2.7.2-1 shows how the alternatives
listed below were derived. The first designation listed represents the OTV
delivery mode and the second represents scavenging.

"0 Alternative 1 CB/ACC
o Alternative 2 CB/CB
o Alternative 3 ACC/ACC
o Alternative 4 ACC/CB
| [ SCAVENGING SYSTEM
I | ACC CARGO BAY
| |
I | CARGO BAY [ 1 2
| oTv | |
| DELIVERY | 1
{ { ACC : 3 4

FIGURE 2.7.2-1 CARGO BAY VS ACC SCAVENGING

2.7.2.2 Cost of 0TV Delivery/Scavenging Alternatives

The cost of the OTV delivery/scavenging alternatives is done in four
parts. First is the OTV delivery computations for both the ACC and CB modes,
next is the scavaging computations in both the ACC and CB modes, third is the
computations for the OTV delivery and scavaging competition, and finally the
computation for the STS benefit factor.
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2.7.2,2.1 OTV Delivery Computations

Computations for OTV delivery to LEO are based upon the configuratioms for
the ACC and CB as shown in Figures 2.7.2-2 and 2.7.2-3 respectively. A
synopsis of a typlcal Geostationary Earth Orbit (GEO) payload delivery mission
using these configurations is shown in Figure 2.7.2-4 for the ACC and Figure
2.7.2-5 for the CB. As can be seen, the cargo bay scenario is significantly
less complex both in terms of OTV operations and on-orbit integration. This
issue is traded against the increased benefits derived from freeing additiomal
STS cargo bay space by placing the 0TV in the ACC.

The Martin Marietta Life Cycle Cost (LCC) Model was used to derive the
OTV delivery cost data for the ACC and CB configurations shown in Tables
2.7.2-1 through 2.7.2-4. These data are used to form the basis for the OTV
economic analysis described in paragraph 2.7.2.3 below. Tables 2.7.2-1 and
2.7.2-2 show the LCC associated with each configuration in constant dollars
and present value (PV) dollars respectively.
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TIME (H:M:S)

00:00:00
00:08:2
00:08:350
00:09:35
00:12:20
00:33:290
00:44:20
01:25:140
21:30:00
22:00:00
23:05:00
24:20:00
24:35:00
25:43:000
26:15:000
27:50:000
36:18:00
36:22:00
36:25:00
36:49:00
38:18:00
43:17:00
43:47:00
44:02:00
TBD

EVENT

LAUNCH

MECO

0TV SEPARATION

DEPLOY AEROBRAKE
ORBITER OMS-1

0TV BOOST-1

ORBITER OMS-2

OTV BOOST-2

ORBITER RENDEZVOUS WITH OTV
GRAPPLE OTV

MATE PAYLOAD TO OTV
RELEASE OTV/PAYLOAD
ORBITER SEPARATION TO SAFE DIS.
OTV BOOST-3
OTV/PAYLOAD SEPARATION
0TV DEBOOST BURN
ATMOSPHERIC ENTRY
ATMOSPHERIC EXIT
JETTISON AEROBRAKE

OTV LEO REBOOST - 1
OTV LEO REBOOST - 2
ORBITER RENDEZVOUS
GRAPPLE OTV

OTV STORAGE

ORBITER DEORBIT

FIGURE 2.7.2-4 ACC GB GEO DELIVERY OPERATIONAL SCENARIO
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TIME (H:M:S)

00:00:00
00:08:20
00:12:20
00:44:20
04:15:00
04:20:00
04:30:00

05:37:00
06:15:00
07:44:00
16:13:00
16:17:00
16:20:00
16:44:00
18:13:00
23:12:00
23:42:00
23:57:00
TBD

EVENT

LAUNCH
MECO

ORBITER OMS-1 (130 NM)
ORBITER OMS-2 (140 NM)
RELEASE OTV/PAYLOAD
DEPLOY AEROBRAKE
ORBITER SEPARATION TO
DISTANCE

OTV BOOST

OTV/PAYLOAD SEPARATION
OTV DEBOOST BURN
ATMPSPHERIC ENTRY
ATMOSPHERIC EXIT
JETTISON AEROBRAKE
0TV LEO REBOOST - 1
OTV LEO REBOOST - 2
ORBITER RENDEZVOUS
GRAPPLE OTV

OTV STOWAGE

ORBITER DEBOOST

A SAFE

FIGURE 2.7.2-5 CARGO BAY GB GEO DELIVERY OPERATIONAL SCENARIO
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TABLE 2.7.2-1 OTV DELIVERY SUMMARY COST DATA (CONSTANT $M)

ACC 0TV CARGO BAY DELTA
R&T 153.00 153.00 0.00
DDT&E 1033.40 1056.40 -23.00
PRODUCTION 29.90 29.90 0.00
OPERATIONS 2998.30 2886.50 111.80
TOTAL 4214.60 4125.80 88.80

CB % REDUCTION = 2.1

ACC-0ORB MODS 163.00 27.00 136.00
TOTAL LCC 4377.60 4152.80 224 .80
TOTAL 1379.30 1266.30 113.00
INVESTMENT
(Total LCC
minus
operations)




TABLE 2.7.2-2 OTV DELIVERY SUMMARY COST DATA (PV $M)

ACC OTV CARGO BAY DELTA
R&T 117.20 117.20 0.00
DDT&E 592.80 , 606.80 -14.00
PRODUCTION 12.70 12.70 0.00
OPERATIONS 1060.30 1020.70 39.60
TOTAL 1783.00 1757.40 25.60

CB % REDUCTION = 1.4

ACC-0RB MODS 92.70 13.20 79.50
TOTAL LCC $ 1875.70 1770.60 105.10
TOTAL 815.40 749.90 65.50
INVESTMENT
(Total LCC
minus
operations)
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TABLE 2,7.2-3 DELIVERY OPERATIONS COMPARISON (CONSTANT $M)

ACC 0TV CARGO BAY DELTA
GB MISSION OPS 10.50 10.50 0.00
GB LAUNCH OPS 2806.70 2726.20 80.50
PRP OPS 1.10 0.60 0.50
PROGRAM SUPPORT 42,40 41.20 1.20
P/L CLUST STR 7.60 6.20 1.40
PROPELLANTS 0.40 0.50 -0.10
AIRFRAME SPARES 0.00 0.00 0.00
AIRFRAME IVA 0.60 0.30 0.30
ENGINE SPARES 5.00 5.00 0.00
ENGINE IVA 0.10 0.10 0.00
BRAKE SPARES 70.00 42,70 27.30
BRAKE IVA 0.10 0.10 0.00
GROUND REFURB 11.80 12,80 -1.00
EXPECTED LOSS 38.60 38.60 0.00
P/L IVA 3.40 1.70 1.70
TOTAL OPS 2998.30 2886.50 111.80
CPF 85.7 82.5 3.19
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TABLE 2.7.2-4 CARGO BAY VS ACC DDT&E COMPARISON (CONSTANT $M)

ACC OTV CARGO BAY DELTA
D&D 372.30 378.30 -6.00
SOFTWARE 61.10 59.30 1.80
TOOLING * 24 .40 31.50 -7.10
SE&I 87.20 88.10 -0.90
TEST HARDWARE * 145.10 152 .40 -7.30
TEST OPS 20.70 21.30 -0.60
TEST FIXTURES 3.60 3.70 -0.10
PROG. MANAGE. 42.80 44,10 -1.30
STAGE DDT&E 757.20 778.70 -21.50
(INC P/L STR)

LEVEL II .
PM,SE&I,TEST 176.00 179.80 -3.80
TEST FLTS 80.20 77.90 2.30

FACILITIES 20.00 20.00 . 0.00

DDT&E TOTAL 1033.40 1056 .40 -23.00

ACC 163.00 0.00 163.00

CB MODS 0.00 27.00 -27.00

TOTAL 1196.40 1083.40 113.00

— — — —— —— — — — ———— — — — —— — ——— —— —— —— —— ——— —— —

*The main cost discriminators include the tradeoff of the heavier tankage/
structure of the cargo bay concept vs the more sophisticated ACC option

aerobraking concept.
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Operations cost and the Design, Development, Test, and Engineering (DDT&E)
costs shown in Table 2.7.2-1 are further detailed in Tables 2.7.2-3 and
2.7.2-4, 1In each of these figures, the cost of acquiring the ACC and cargo
bay capabilities are shown separately.

2.7.2.2.2 Scavenging Computations
2.7.2.2,2.1 Requirements and Assumptions
Costs of scavenging were also computed for both the ACC and CB
modes., Additional requirements and assumptions used as a basis for arriving

at the scavenging costs are shown below.

o REQUIREMENT

5.5M 1b propellant required
Delivery 1999 - 2010 (12 years)
Investment 1995 - 1998 (4 years)
110 missions

o ASSUMPTIONS

- Constant flight rate (9 missions/yr)
- Constant investment distribution
- Constant 1985 dollars
- Cargo bay scavenging
—~ 181 scavengable flights
-~ 2.53M 1b propellant scavenged -
-- Development, Production & Operations Cost $151M
(Investment $40M + Production & Operations $111M)
- ACC Scavenging ‘
-~ 328 scavengable flights
-- 4.,59M 1b propellant scavenged
-~ Development, Production & Operations Cost $1250M (Investment $83M
+ Production & Operations $1167M)
~ Composite Discount Factor
-~ Investment = 1.34
-~ Operating = 1.97
—- STS Delivery Cost = $1014/1b

In this trade, the discount factor is treated as a constant to
simplify computations. This can be done since we use a constant number of
flights per year and a constant cost per flight. This same procedure is
applied to the DDT&E costs by assuming costs are distributed equally over a
five year period.

The amount of propellant required, 5.5 mlb, was derived from a
performance simulation using the ground mission profile contained in Revision
8 of the MSFC OTV Mission Model.
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report showed a discrepancy in charging.

We believe the investment (DDT&E) cost shown in the MSFC ground
rules was high and comsequently reduced the figure to $83M from $212M. A
revision of the ACC study final report and the ACC scavenging study final

Table 2.7.2-5 shows where the

discrepancies occurred in the original scavenging DDT&E costing.

operations.

TABLE 2.7.2-5 PROPELLANT SCAVENGING DDT&E COST REVISION

Expendable for OTV DACC

I
[ REVISED |
GROUND RULE ELEMENT | cost cost | COMMENT
|
|
PROPELLANT SCAVENGING DDT&E | $65M $65M [—
|
[
DDT&E for STS MODS and | |
Integration 1$101M $12M |
o ACC DDT&E ] 60.9M 12M | Assumed 20% MOD to DACC
o Facility | 34.9M - | Existing with DACC
o GSE | 6.4M - | Existing with DACC
| [
[ il
STS DDT&E | $46M $6M [
o Level II Integration | 30.5M 6M | Assumed 20% DACC to MOD
o Orbiter MODS |  9.5M - | Existing with DACC
o ET MODS |  6.3M - | Existing with DACC
I l
[ |
Total 1$212M $83M | Reductions due to DDT&E
| |
| |

2,7.2.2.2.2 Propellant Delivery Costs

The amount of propellant recovered under the scavenging concept is
dependent, in part, on the number of STS missions suitable for scavenging

A significantly greater number of flights for scavenging are

available using the ACC concept, (328 ACC versus 181 CB missions) since the
full cargo bay space remains available for mission payloads whereas this is
not the case under the cargo bay concept.

and 2 07 02-8.

Calculations used to compare the costs of providing propellant at
LEO using the ACC and cargo bay methods are shown in Tables 2.7.2-6, 2.7.2-7,

These calculations are made in constant dollars.

The figures

used to arrive at this cost are extracted from the OTV Concept Definition and
System Analysis Studies ground rules issued by the MSFC in May 1985 with the
exception of the total amount of propellant required (5.5 mlb) which is
described above, and modifications to the ACC scavenging system DDT&E (Table
2,7.2-5),
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The results of this constant dollar evaluation show nearly a billion dollar
spread favoring the ACC over the cargo bay scavenging method.

TABLE 2.7.2-6 PROPELLANT SCAVENGED

[ | No. of | |
| | Available | Average | Propellant
| | Scavenging | Propellant | Scavenged
I | Flights | Scavenged (1b) | (1b)

| | J
} ACC Version | 328 X 14,000 = 4 . 59M

|
| Cargo Bay | 181 x 14,000 = 2.53M
| I

TABLE 2.7.2-7 STS PROPELLANT DELIVERY COST
| | Total | | STS .l
| | Propellant | Scavenged | Delivery | Delivery
| | Required (1b) | Propellant (1b) | to LEO | Cost
! : EEES
| &cc | .5 = Z.591) X $101% = $923N
| |
| cargo Bay | (5.5M - 2.53M) x $1014 = $3012M
| |
TABLE 2.7.2-8 TOTAL PROPELLANT COST AT LEO

[ | Development | 'STS
| | Production | Delivery
| | Operations | to LEO Total
| I Cost { Cost Cost
|
|"acC ] $1250M +  $923M = $2253M
| |
| cargo Bay | $ 151M + $3012M = $3163M
| l

Tables 2.7.2-9 and 2.7.2-10 provide a scavenging cost comparison between
the ACC and cargo bay which show a significantly different picture. Because
of the time value of money, the magnitude of the difference is reduced. It
should be noted that an approximation method was used in that the yearly
distribution of costs were assumed in order to simplify computations,

The investment (DDT&E) costs, shown in Table 2.7.2-9 represent the total

constant dollar investment spread over four years and reduced by a discount
factor,
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The operations costs equation, shown in Table 2.7.2-10 contain three
terms. The first term is the cost of production and operations per year. The
second term is the cost of delivery by the STS and is the difference between
the propellant required per year and the amount scavenged. The third term is
the cost of transportation of the scavenging system.,

The cost of the ACC scavenging system is considerably higher because it is
a "smart stage” having propulsion and guidance and, as a consequence, is
heavier. The weight of this system is estimated to be 8.6 klb., This weight,
in turn, translates into a cost for delivery to LEO. The results of the
present value dollar evaluation shows a $153M spread favoring the ACC over the
cargo bay scavenging method.

TABLE 2.7.2-9 INVESTMENT COSTS (PV)

| | Scavenged | Discount | Present
| | DDT&E Per | Factor | value
| | Year | (10%/year) | Investment
| | | | cost
| | | I
| |
| Acc | 83 x 1.34 ' = 27.8M
I | . &
| |
| Cargo Bay | 40 x 1.34 = 13.4M
| | 5
| |
TABLE 2.7.2-10 OPERATIONS COST (PV)
| [ Cost of | Cost of | Cost of [Compo- |Present
| | Scav. | STS Propellant | Scavenging/Yr. Isite |value
| | /year | Delivery/Year | Ipis-  |Ops.
| | | | |count |Cost
| | | | |Factor |
| | - r - Wt. 1]
] ] Total Scav- STS Pen. STS Ave.
| |[{[Prod.& Prop. - enged Del (ACC) Cost STS ops.
| [{lops +|Reqd. Prop x Cost|+ | or x per x Flts.||x 1.97 = Cost
| l{{years Years Vol. Flt, per
| IL Pen. Year
| = - - = Y(cB) =
| acc ||i167M 7 + (5.5 ~ 4.59)M x 1014|+[B600 x 73M x 8 x 1.97 = $480M
| | [12 J [ 12 72000
| |
|cargo|{l1iM 7 +|(5.5 - 2.5)M x 1014'+-[0.1 x 73M x 8] x 1.97 = $633M
| Bay |[[12° 12 .
| |

(See Section 1.3 for an explanation of uniform discounting.)
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2.7.2.2.3 Computation for OTV Delivery and Scavenging Competition

The competition for the OTV delivery/scavenging concept is to
neither develop an ACC or cargo bay for delivery of OTV to LEO nor develop a
scavenging system (expendables 1994-1994; SBOTV 1999-2010 without propellant
scavenging). All missions would be accomplished with expendable vehicles and
with a propellant tank located in the cargo bay of the STS. The trade assumes
conservatively that no DDT&E cost will be expended by the competition for a
propellant tank in the cargo bay. Since this trade was designed to include
the impact of the type of reusable GBOTV (cargo bay or ACC) as well as the
subsequent evolution of a space based propellant delivery system, the
competition consisted of the following program components:

a) Use of existing expendables from 1994-1998

b) Subsequent propellant delivery of space based propellants via STS

tanker (5.5 mlb over 12 years, 1999-2010, see Table 2.7.2-11).

The cost of the competition to the scavenging system, STS delivered
propellant, is summarized in Table 2.7.2-11. The cost for ground based
operations from 1994-1998 with expendable stages is computed to be $1874M
(Table 2.7.3-23, 1994-1998). This amount was derived by the Martin Marietta
LCC computer model, The total competition cost is the sum of the scavenging
competition (STS tanker) ($916M) and the expendable stage delivery ($1874M)
for a total competition cost of $2790M.

TABLE 2.7.2-11 COMPETITION PROPELLANT DELIVERY COST

12

| I ] [ I
| Propellant | STS Delivery | Composite | sTS [
| per year | to LEO | Discount | Propellant |
| | ($ per pound) | Factor | Delivery Cost |
| | | | ($M PV) |
l 5,54 X 1014 X 1.97 = 916 l[
|

| |

2.7.2.2.4 STS Cargo Bay Benefit Factor Computation

The difference in manifesting cargo under the ACC and cargo bay
modes of operation shows that additional volume and weight is made available
to the STS for other payloads when the ACC mode 1is used. In order to make a
fair assessment of this benefit, credit is awarded to the ACC concept for the
benefit the STS receives., This is justified to offset ACC development costs
since cost is added to the OTV system when expenditures are made on collateral
systems for OTV support, In order to compensate for anomalies that may exist,
the benefit is reduced to 50 percent of the calculated amount.
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The calculations involve examination of the 35 ground based missions
in both the ACC and cargo bay modes. Due to differing payload weights and
volumes, missions have payload weight and volume less than the 60 linear feet
and 72 k1lb STS capacities. A large volume benefit is realized by moving the
OTV out of the cargo bay into the ACC. Adjustments are made, accordingly, if
either the weight or volume benefits exceeded the capacity of the. STS, e.g.,
if the payload weight is the maximum 72 klb and the cargo bay linear volume is
50 feet, zero credit is given for the remaining 10 linear feet since adding
additional payload will exceed the STS weight capacity.

Examination of the 35 ground based missions produced the ACC and
cargo bay total weights and volumes cost benefit for OTV delivery shown below.

Available capacity in the cargo bay mode:

Volume: $50M
Weight: $130M

Avallable capacity in the ACC mode:

Volume: $500M
Weight: ¢$170M

These figures are used in the algorithms shown in Table 2.,7.2-12 to produce
the STS derived benefit of $245M.

TABLE 2.7.2-12 STS DERIVED BENEFIT

| Volume Benefit ] Weight Benefit T

| |

| Benefit | ACC [ C | Benefit | ACC | CB 1 sTs

] Reduction ] Volume | Volume ] Reduction | wt | wt | Derived
| Factor | Benefit | Benefit | Factor | Ben. | Ben. | Benefit
| | ] |

| 0.5 x (500 - 50M) + 0.5 x (170M ~ 130M) = $245M

|

(See Section 2.7.1, pages 73-74, for an explanation of STS benefits.)

The cost components that comprise the trade alternatives and hypothesized
competition are summarized in Table 2.7.2-13. These figures are grouped
together in Table 2.7.2-14 to show the combined cost for OTV delivery and
scavenging for investment and operations under each of the trade
alternatives. The total shown on this table are used in the analyses of the
alternatives contained in the next paragraph below.
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TABLE 2.7.2-13 COST DATA SUMMARY

STS Derived Benefit for OTV Delivery

|
ITEM l COST (PV)
|
OTV Delivery Cost |
ACC I
Investment | $815.4M
Operations | $1060.3M
Cargo Bay |
Investment | $749.9M
Operations | $1020.7M
Scavenging Costs |
AcCC l
Investment | $27.8M
Operations |  $480.0M
Cargo Bay |
Investment |  $13.4M
Operations : $633.0M
Competitive Costs |
GB Delivery | $1874M
STS Propellant Delivery | $916M
|
|
|
{

ACC © ($245.0M/0TV Credit)
Cargo Bay 0
TABLE 2.7.2-14 ALTERNATIVE COST SUMMARY
| ] o
ALTERNATIVE | OTV DELIVERY | SCAVENGING | TOTAL
| | |
[
CB/ACC (Altermative 1) |
Investment | $ 749.9M + ¢ 27.8M = §777.7M
Operations } $1020.7M +  $480.0M = $1500.7M
CB/CB (Alternative 2) |
Investment | § 749 .9M + $ 13.4M = §$ 763.3M
Operations ] $1020.7M + $633.0M = $1653.7M
|
ACC/ACC (Alternative 3) |
Investment | $§ 815.4M + $ 27.8M = $ 843.2M
Operations | $1060.3M + $480.0M =  $1540.3M
I
ACC/CB (Alternative 4) |
Investment | $ 815.4M + $ 13.4M = ¢ 828.8M
Operations | $1060.3M + $633,0M = $1693.3M
1

(To track numbers, see Tables 2.7.2-2, 2,7.2-9 and 2.7.2-10.)
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2.7.2.3 Alternative Comparison.

The aggregate benefits for each of the delivery and scavenging
combinations are shown in Tables 2.7.2-15 and 2.,7.2-16., The data used in
these tables have been brought forward from the Cost Data Summary (Table
2,7.2-13) and the Alternative Cost Summary (Table 2.7.2-14).

The benefit, shown in Table 2.7.2-15, indicates that all alternatives
provide an advantage over not undertaking any development for STS delivery or
scavenging.

The return on investment, shown in Table 2.7.2-16, factors in
investment cost. This calculation supports the finding that all alternatives
provide a viable solution.

A comparison of alternatives against the principal selection criteria
is shown in Tables 2.7.2-17. This comparison shows the alternative of using
the ACC for both the 0TV delivery and the scavenging system provides the
greatest advantage. This is largely due to the freeing of revenue bearing
cargo bay space leaving additional weight and volume for other payloads. This
is a significant advantage since the available capacity can be used for
logistics cargo destined for the space station or for other payloads that may
be orbited during the same time frame,

TABLE 2.7.2-15 BENEFITS (PV)

|
OTV DELIVERY | STS

| 1

| |

| OTV DELIVERY/ | COMPETITION & SCAVENGING | DELIVERED TOTAL

l SCAVENGING | COST COST | BENEFIT BENEFIT
| |

| |

| cB/ACC | $2790.0M - $1500.7M + 0.0 = $1289,3M

| |

| cB/CB | $2790.0M ~ $1653.7M + 0.0 = $1136.3M

| I

| ACC/AcCC | $2790.0M - $1540,.3M + $245,0M = $1494,7M

| |

: ACC/CB | $2790.0M - $1693.3M + $245,.0M = $1341.,7M
|

(See Sectiom 2.7.1, pages 73-74, for an explanation of STS benefits.)
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TABLE 2.7.2-16 RETURN ON INVESTMENT
(1985 $M [PV])

9.1

| | L | 1
| joTv | | [
| | DELIVERY & |STS | |
OTV DELIVERY/ |COMPETITION |SCAVENGING |DERIVED | INVESTMENT |TOTAL
SCAVENGING |cosT |cosT | BENEFIT | (DDT&E) |ROI
| | | |
|
CB/ACC 1(¢2790.0 - 1500.7 + 0.0) / 777.7) -1 = 65.8%
|
CB/CB | ((2790.0 - 1653.7 + 0.0) / 763.3) -1 = 48.9%
!
ACC/ACC [((2790.0 - 1540.3 + 245,0) / 843.2) -1 = 77.3%
|
ACC/CB | ((2790.0 - 1693.3 + 245.0) / 828.8) -1 = 61.9%
|
TABLE 2.7.2-17 OTV DELIVERY/SCAVENGING TRADE RESULTS
] | 1 |
ECONOMIC | [ | {
FACTOR | cB/AcC | CB/CB I ACC/ACC { ACC/CB
| |
| | | [
Return on | 65.8% | 48.9% | 77.3% ] 61.9%
Investment | | | =
| ! |
Benefits 1$1289,3M 1$1136.3M 1$1494 . 7M =$1341,7M
| | |
Investment |1$ 777.7M |$. 763.3M ,$ 843.2M §$ 828.8M
| |
| | | |
SCORE | | | |
| | | |
| [ | [
Return on ] 8.5 | 6.3 ] 10.0 | 8.0
Investment | i : {
| [
Benefits | 8.6 | 7.7 } 10.0 } 9.1
| [
Investment | 9.8 | 10.0 | : 9.2
| | |
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2.7.2.4 Conclusion

We conclude from this study that all alternatives considered provide a
benefit worthy of acquisition. Of the alternatives considered, using an ACC
for delivering the OTV to LEO during ground based operations and using the ACC
for a scavenging system during space based operations provide the greatest
economic advantage. This is clearly indicated as the best alternative through
a comparison of return on investment with benefits and through a comparison of
return on investment with investment (DDT&E).

A major element in providing the ACC advantage is the increase in
available payload volume and weight by moving the OTV and scavenging system
out of the revenue producing STS cargo bay and into the ACC.

It is important to note that this conclusion is based upon a relatively
low STS flight rate. If a more optimistic rate is assumed, the benefits of
the ACC scavenging concept would increase and thus make it even more
attractive,

Finally, as noted at the beginning of this step of the trade report,
the selection of the ground based OTV delivery mode in the first part of the
analysis will eliminate one of two OTV evolutionary configuration optioms in
the second part of the analysis. Selection of the ACC for OTV delivery
thereby eliminates Option 6, OTV cargo bay delivery during ground basing, and
retains Option 2, ACC delivery, for further consideration.

2.7.3 Step 2, Preferred Overall Evolution

The purpose of this subtrade study analysis is to select the most
economical OTV evolution strategy from the remaining five trade study options
shown in Figure 2.7.3-1. The remaining options include one ground based
option (Option 7) and four space based options, The ground based option
avoids the high investment cost for Space Station accommodations and for a
scavenging system. The space based options have merit in avoiding a high
delivery cost to LEO for all but the vehicles initial delivery to the Space
Station., Space based configurations are also less constrained by the envelope
dimension of the STS cargo bay/ACC.

Economics are a principal discriminator in the selection of the
development strategy. Since there are no near term mission delivery
requirements cited in the mission model which cannot be accomplished by
existing upper stages, the selected 0TV system must be able to improve the
cost of delivering payloads over the current STS/expendable systems,

Economic data gathered for each option are derived from simulated missions
flown against Revision 8 of the MSFC 0TV Low Mission Model. Economic data for
the competition, represented by existing upper stage payload delivery systems,
i1s also gathered in the same way. Using these data, the options are compared
with one another and the competition. Any costs associated with the
development and operation of interfacing systems such as the ACC, scavenging,
etc., are assigned to the option(s) that use them.
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Figures 2.7.3-3 through 2,7.3-7, placed at the back of this section of the
report, pictorlally illustrate the configurations and evolutionary steps of
each of the remaining options. Configuration alterations may take place at
two basic block changes. One is from ground basing to space basing and the
other is from nonman-rated to man-rated. Ground based configurations are
designed for packaging within the ACC whereas space based configurations are
not as restricted by a constraining envelope. Changes from ground to space
basing include moving the avionics from an integral packaging within the
structure to a ring design to facilitate on~orbit maintenance. Changes from a
nonman-rated configuration to a manrated configuration involve added
redundancy to preclude any single credible failure from preventing the safe
return of the crew. A prime example is moving from a single engine to dual
engines. The aerobrake is unique to each configuration.

[ ] [
|GB IsB |MAN-
l10C }IOC :RATED
o
OPTION |94 95 96 97 98 99 00 01 02 03 04 05 06 07 |08 09 10

|
I
I
I
|
| |
J ] |
i 1 { ----- GBU : SBM I
| 2 | ==-—— GBU | SBU | ==SBM~—-
I | I |
|RE- I I I
:SERVED { i :
| & o m—— EXU I SBM
| I | I
| 5 | =——— EXU | SBU | ==SBM~—-
I | | I
| RE- | | |
} SERVED = ! I
{ 7 { ---~ GBU } GBU (55K)====~=- , ==GBM~=-
LEGEND:
GBU 45 k1lb Ground Based Nonman-rated
SBU 55 k1lb Space Based Nonman-rated
SBM 55 klb Space Based Man-rated
GBM 55 k1b Ground Based Man-rated
EXU Expendable Nonman-rated
CB STS Cargo Bay
ACC Aft Cargo Carrier
NOTE:

1. All space based O0TVs are delivered in the STS cargo bay.
2. All ground based QOTVs are delivered in the ACC except as noted in
Option 6.

FIGURE 2.7.3-1 REMAINING OTV CONFIGURATION EVOLUTION OPTIONS
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2.7.3.1 Cost of Remaining Alternatives

Aggregate program costs for each of the remaining options are
summarized in Table 2.7.3-1 in constant dollars and in Table 2.7.3-2 in
discounted dollars. These tables include collateral costs associated with
each option's interface requirements, i.e option's interface cost for Space
Station, ACC, propellant scavenging, and payload transportation. The tables
also address research and technology, DDT&E, production, and operations
costs. A more detailed breakdown for DDT&E, production and operations cost
for each option is contained in Tables 2.7.3-8 through 2.7.3-22 located at the
back of this section.

The life cycle cost totals between options are quite close. The
difference between the highest and lowest option in discounted dollars is only
147% (Table 2.7.3-2). This indicates that other factors such as risk,
flexibility, and growth play a greater role in discriminating between optiomns.

Life cycle costs calculations for the competition represented by
existing upper stage vehicles are shown in Table 2.7.3-23 located at the back
of this section. Information extracted from the totals shown on this table is
used in the discussions below.

The cost per flight to capture 145 missions of the Revision 8 Low
Mission Model are shown in Table 2.7.3-3. Two values are shown for the
competition cost per flight., When flown against the Revision 8 Low Mission
Model, the expendable upper stages take more STS flights and more upper stages
to deliver the payloads. The real cost per flight is determined by the total
cost divided by the number of transportation actions, i.e. 220 flights. For
comparative purposes the cost per flight is adjusted to 145 missions thereby
raising the cost per flight to an equivalent of $155.0M. A comparison of this
figure with the cost per flight of each option shows the options with a
significant advantage.
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TABLE 2.7.3-1 OPTION COST SUMMARY (CONSTANT $M)

I OPTIONS |
[ 1 2 A 5 7 [
INTERFACING | - |
SYSTEM |GBU/SBM/SBM |GBU/SBU/SBM |EXU/SBM/SBM |EXU/SBU/SBM |GBU/GBU/GBM |
Space | [
Station : 936.00 936.00 936.00 936.00 0.00 |
I
[ |
ACC I 163.20 163.20 163.20 163.20 163.20 |
|
] |
Prop Scav | 83.00 83.00 83.00 83.00 0.00 |
| |
] |
P/L Trans | 4995.11 4995,11 4995.11 4995.11 4995,11 I
. |
Subtotal | 6177.31 6177.31 6177 .31 6117.31 5158.31 |
|
|
i |
0TV | |
| |
| |
R&T | 153.00 153.00 153.00 153,00 153.00
]
]
DDT&E | 1351.49 1414 .69 1218.70 1257.60 1223.79
|
|
Prod. | 145.30 251.10 29.90 145,30 242,30
|
]
OPS 6408,21 6098.01 8754 .00 8443.00 12332.21
|
Subtotal | 8058.00 7916 .80 10155.60 9998.90 13951.30
TOTAL [14235.41 14094.11 16332.91 16176.21 19109.61
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TABLE 2.7.3-2 OPTION COST SUMMARY (DISCOUNTED $M)

| | OPTIONS
I | 1 2 Z 5 7
| INTERFACING |
| SYSTEM |GBU/SBM/SBM |GBU/SBU/SBM |EXU/SBM/SBM |EXU/SBU/SBM |GBU/GBU/GBM
| “Space o
} Station } 315.50 315.50 315.50 315.50 0.00
| I
’ ACC I 92,60 92.60 57.53 57.53 92.66
| I
{ Prop Scav | 30.75 30.75 30.75 30.75 0.00
[ T
I P/L Trans , 790.00 790.00 790.00 790.00 790.00
| ] ‘
1 Subtotal | 1228.85 1228.85 1193.78 1193.78 882.66
|
| ]
| |
| oTv |
I |
| |
| R&T | 116.94 116.94 72.61 72,61 - 116.94
{ |
|
| DDT&E | 692.07 686.32 435,42 421,93 639.90 -
l |
I
| Prod. |  47.28 59.07 8.66 23,33 57.23
[ |
| ]
| opPs | 1596.57 1543.63 2416.02 2363.09 2527.33
{ |
I
| Subtotal | 2452.86 2405.96 2932.71 2880.96 3341.40
| ]
| [
| TOoTAL | 3181.71 .  3634.81 4126.49 4076.74 4224 ,06
I |
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TABLE 2.7.3-3 COST PER FLIGHT (CONSTANT $M)

Competition Cost per Flight:
220 required missions cost: $120.8
145 equivalent mission cost: $155.0

| |
|  OPTION | operations + P/L Trans / 145 Flts = Cost/Flight
| }
| |
| 1 | 6408 + 4995 / 145 = 79
! GBU/SBM/SBM |

|
| 2 | 6098 + 4995 / 145 = 77
} GBU/SBU/SBM {
I 4 | 8754 + 4995 / 145 = 95
i EXU/SBM/SBM I
! 5 | 8443 + 4995 / 145 = 93
! EXU/SBU/SBM I
| 7 | 12332 + 4995 / 145 = 119
{ GBU/GBU/GBM l
|
|
|
|
|

The investment cost, shown in discounted dollars in Table 2.7.3-4,
includes the cost of acquiring the OTV and the cost of interfacing systems.
Ground based Option 7 shows the lowest investment cost largely because it does
not use either space station or scavenging systems. Options 4 and 5 also show
a low investment because they do not have a ground based 0TV configuration and
can defer development costs of space based OTV configurations
to a later time where they are discounted more. Options 1 and 2 show the
highest investment costs due to earlier expenditures for ACC accommodatiomns,
research and technology, and DDT&E.
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TABLE 2.7.3-4 INVESTMENT (DISCOUNTED $M)

|
OPTION |Space Station + ACC + Scav. + R&T + DDT&E + Prod. = Investment
| .
|
1 }  315.5 + 92.6 + 30.8 + 116.9 + 692.1 + 47.3 = 1295.2
GBU/SBM/SBM |
|
2 |  315.5 +92.6 + 30.8 + 116.9 + 686.3 + 59.1 = 1301.2
GBU/SBU/SBM |
|
4 | 315.5 + 0.0 +78.6 + 72.6 + 435.4 + 8.7 = 910.8
EXU/SBM/SBM |
I
5 |  315.5 + 0.0 + 78.6 + 72.6 + 424.5 + 23,3 = 914.5
EXU/SBU/SBM =
7 | 0.0 +92.7 + 0.0 + 116.9 + 639.9 + 57.2 = 906.7
GBU/GBU/GBM |
|

A benefit analysis is shown in Table 2.7.3-5 for each option, Benefit

represents the difference between the cost of the competition and the OTV

option to accomplish the mission model.

Where applicable, the STS benefit

(described in 2.7.2.2.4 above) is added to provide the total benefit the
option holds over the competition to do the job.

TABLE 2.7.3-5 OTV OPTION BENEFITS (PV $M)

|
OPTION | Competition -~ Option Cost + STS Benefits = Benefit
| (Ops + P/L Trans)
|
1 | 4974 -~ (1596.6 + 790) + 245 - 2832.4
GBU/SBM/SBM |
|
2 | 4974 - (1543.6 + 790) + 245 2885.4
GBU/SBU/SBM |
|
4 - | 4974 - (2416.0 + 790) + O = 1768.0
EXU/SBM/SBM |
|
5 | 4974 - (2363.1 +790) + O - 1820.9
EXU/SBU/SBM |
|
7 | 4974 - (2527.3 + 790) + 332.7 = 1989 .4
GBU/GBU/GBM | ,
|
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The investment cost is added into the equation in Table 2.7.3-6 to
produce a return on investment (ROI) ratio. The ROI difference among optlons
is small with Options 1, 2 and 7 virtually falling into a tie. Option 7
favorable value is primcipally due to its relatively low investment cost.

TABLE 2.7.3-6 OTV OPTION RETURN ON INVESTMENT (PV)

| I
} OPTION | (Benefit / Investment) - 1 = ROI
|
| ]
I 1 |  (2832.4 / 1295.2) -1 = 1.19
I GBU/SBM/SBM {
| 2 | (2885.4 / 1301.2) -1 = 1.22
, GBU/SBU/SBM {
| 4 |  (1768.0 / 920.3) -1 = 0.92
{ EXU/SBM/SBM |
[
| 5 |  (1820.9 / 921.4) -1 = 0.98
} EXU/SBU/SBM =
| 7 | (1989.4 / 906.7) -1 = 1.19
} GBU/GBU/GBM ’

Figure 2.7.3-2 shows the payback and accumulation of benefits the five
remaining options hold over the competition. The all ground based option,
Option 7, provides the earliest payback because of the lower investment cost.
The rate of benefit accumulation for Option 7 decreases when the mission
complexity increases and a greater number of STS flights are required to
support mission operations,

Options 4 and 5, which use existing expendable vehicles for the ground
portion of the model, effectively delay the large space based investment.
This delay also reduces the time available for benefit accumulation thereby
increasing the number of missions before payback is realized and lessening the
net benefit accumulation vis-a-vis the other options. The number of missions
required before payback of an option is realized as follows:

o Option 1l 48 Missions
o Optiom 2 48 Missions
o Option 4 80 Missions
o Option 5 81 Missions
o Option 7 25 Missions

99



1}

NOSTYVAW0D X9AIVHIS AMVNOILNTOAT ALO ¢-€°L° T TANOIA

‘ . sJeoy

60 80 L0 60 SO ¥0 €0 20 T0 00 66 88 L8 96 C6 ¥6 €6 26 16 06 68 88 L8
SRRSO R WY W W S N N NN S RO S SH SR SN N S S N N

NAm-amm-:mxm 3=
/ .G "ON a\

RAS-NdXd % ‘ON—g

4S/N4Y 1T "OoM

RES-N4S-N4d ¢ *oN

HE9-Ng9-4n9 [ "oN B

so1gepuedxy JeaQ sIujaug

00°T—
08'0-
09°0—
0¥'0-
0e'o-
000
020
o¥'o
09°'0
08°'0
00°1
0e'1
o¥'1
09°71

eIv[I0od C868T JO STOFIIIg

100



2.7.3.2 Alternative Comparison

Table 2.7.3-7 shows the principal economic factors for the candidate
options along with scoring. As before, the best candidate is awarded a score
of 10 and the other options a score relative to that awarded the best
candidate. The table shows Options 1 and 2 rank high with virtually the same
scores, Option 7 scores high an investment which also raises the score for
ROI. Option 7 benefits are disproportionately low vis-a-vis Options 1 and 2.
Options 4 and 5 score high on investment cost but low in the other two
categories. The payback comparison, Figure 2.7.3-2, along with the ROI and
benefits comparison place Options 4 and 5 below the other options considered.

TABLE 2.7.3-7 OTV OPTION RESULTS

| T OPTION

|Economic | 1 2 4 5 7
lIFactor IIGBU/SBM/SBM GBU/SBU/SBM EXU/SBM/SBM EXU/SBU/SBM GBU/GBU/GBM
[ [

{ROI | 1.19 1.22 0.92 0.98 1.19
| Benefits ] 2832.4 2885.4 1768.0 1820.9 1989 .4
}Investment { 1295.2 1301.2 920.3 921.4 906.7 .
I |

| Scores |

I I

I [

|ROI | 9.8 10 7.5 8.0 9.8
| Benefits | 9.8 10 6.1 6.3 6.9
| Investment : 7 7 9.8 9.8 10

Option 7 remains attractive only if the low investment costs are real.
In order for the attractiveness of this option to be sustained, the STS user
fee of $73M per flight or less must be achieved. For example, if the STS user
charge were to increase to $100M, the Option 7 benefit would be reduced to
$756M (discounted $) making it economically undesirable in that the investment
would not be paid back in 145 mission. The STS 1lift capacity is another
consideration. When using the groundruled 72 klb STS payload capacity, we
find that 1.6 shuttle flights per 0TV mission is required. If this capacity
should be reduced to 65 klb, for example, the benefit would decrease to $1625M
(discounted $) with a resulting ROI of 0.79. It also should be noted that
Option 7 competes with revenue producing payloads for cargo space thereby
reducing STS profitability.

Options 1 and 2 differ only in the space based unmanned phase of the
mission model in that Option 2 specifies an intermediary space based nonman-
rated vehicle whereas Option 1 moves initially to a space based man-rated
vehicle. Costs for Option 2 are slightly higher principally due to the costs
of acquiring a different vehicle for the space based nonman-rated phase.
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There are four principal non-economic factors that favor Option 1 over .
Option 2. First, Option 1 maximizes early verification of man-rated
reliability. Second, Option 1 reduces Space Station operational complexity in
that it is only involved with one program cycle (space based man-rated).
Third, Option 1 provides greater flexibility in that the earlier experience
with the vehicle can promote confidence for accelerating the schedule for more
advanced missions earlier, i.e. heavier payloads, manned missions, and lunar
mission. Fourth, Option 1 has a lower cost risk than Option 2 because it has
only two major program cycles rather than 3, involves no space based avionics
repackaging, and remains with only one engine type rather than two engine
types.

2.7.4 Conclusion

All OTV optioms provide an economic advantage over the continued use of
exlsting expendable vehicles for accomplishing the missions postulated in
Revision 8 of the MSFC Low OTV Mission Model.

Step 1 of the trade study shows that it is better during ground based
operations to deliver the OTV via the STS Aft Cargo Carrier (Option 2) rather
than in the cargo bay (Option 6). Step 2 of the trade study shows that Option
1l and 2 costs are essentially equal and both options hold an economic
advantage over the remaining options. Option 1 provides several non economic
advantages over Option 2, These include maximizing early verification of
man~rated reliability, reducing space station operations complexity, providing
greater flexibility by making it possible to do more advanced missions
earlier, and reducing risk by eliminating the need to change vehicle
configurations midway through the space based phase of the mission model,

Based upon the ground rules and assumptions used in this study, Option 1
is recommended as the preferred evolutionary strategy for OTV development.
This option progresses from a nonman-rated OTV carried in the ACC during
ground based operations to a man-rated QTV based at the space station during
space based operationms.

The conclusions reached for the preferred overall evolution are largely
based upon the postulated ground rules and assumptions and the results of
other trade studies contained in this report. Any changes in the underlying
ground rules and assumptions may have a bearing upon the conclusions reached
in this study. Some key issues that may alter these results include: mission
model length and activity level, utilization of scavenging for propellant
recovery at LEO, operations risk of the ACC, STS cost per flight changes -- up
or down, STS payload 1lift capability ~- up or down, availability of the STS,
accommodation of DOD requirements including no Space Station utilization and
access to molniya orbits, and restrictions on Space Station utilization due to
interference with other operationms.
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